A=x/xy+x+1 + y/yz+y+1 + z/xz+z+1
Giúp mình với nhá
Ahihi
bài 1: Phân tích đa thức thành nhân tử
a, (xy-1)2+ (x+y)2
b, a2+2a2+2a+1
c, (1+2a).(1-2a)-a.(a+2).(a-2)
d, a2+b2-a2b2+ab-a-b
e, xy.(x+y)-yz.(y+z)+xz(x-z)
f, xyz-(xy+yz+zx)+(x+y+z)-1
giúp em với ạ ! em đang cần gấp
\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)
\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
(\sqrt((x+yz)(y+xz)))/(xy+z)+(\sqrt((y+xz)(z+xy)))/(x+yz)+(\sqrt((x+yz)(z+xy)))/(y+xz)
Với x,y,z>0 thỏa mãn x+y+z=1
1.a.rút gọn biểu thức M = \(\dfrac{\text{1}}{\text{(x - y)(z² + yz - x² - xy)}}-\dfrac{\text{1}}{\text{(y - z)(x² + xz - y² -yz)}}+\dfrac{\text{1}}{\text{(z - x)(y² + xy - z² - xz)}}\)
b. tính giá trị của M tại x = y = z = 2015
\(\dfrac{1}{\left(x-y\right)\left(z^2+yz-x^2-xz\right)}=\dfrac{1}{\left(x-y\right)\left[\left(z-x\right)\left(z+x\right)+y\left(z-x\right)\right]}=\dfrac{1}{\left(z-x\right)\left(x-y\right)\left(x+y+z\right)}\)
Tương tự: \(\dfrac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}=\dfrac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}\)
\(\dfrac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}=\dfrac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}\)
\(\Rightarrow M=\dfrac{y-z-z+x-x+y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}\\ M=\dfrac{2}{\left(x-y\right)\left(z-x\right)\left(x+y+z\right)}\)
\(a,\) Bổ sung điều kiện: \(x\ne y\ne z\)
\(b,\) Đề bài ko thỏa mãn điều kiện nên không tính đc M
Cho x,y,z>0; x+y+z=1
Tính \(Q=\sqrt{\dfrac{\left(x+yz\right)\left(y+xz\right)}{xy+z}}+\sqrt{\dfrac{\left(y+xz\right)\left(z+xy\right)}{x+yz}}+\sqrt{\dfrac{\left(x+yz\right)\left(z+xy\right)}{y+xz}}\)
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
câu1 .a2+b2-a2b2+ab-a-b
câu 2 . xy.(x+y)-yz.(y+z)+xz(x-z)
câu3 .xyz-(x+y+yz+xz)+(x+y+2)-1
Câu 1:
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=-a^2\left(b-1\right)\left(b+1\right)+\left(b-1\right)\left(a+b\right)\)
\(=\left(b-1\right)\left(-a^2b-a^2+a+b\right)\)
\(=\left(b-1\right)\cdot\left[-b\left(a^2-1\right)-a\left(a-1\right)\right]\)
\(=\left(b-1\right)\left(a-1\right)\left[-b\left(a+1\right)-a\right]\)
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
tìm x,y,z nếu xy-x=1; yz+y-z=7; xz+x=6
Mọi người giúp mình với chiều mình phải nộp rồi
Cmr \(\frac{x-y}{1+xy}+\frac{y-z}{1+yz}+\frac{x-z}{1+xz}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(1+xy\right)\left(1+yz\right)\left(1+xz\right)}\)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z) giải được mình sẽ tích đúng cho tất cả các câu trả lời của bạn
Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(