Cho \(\frac{n}{n^2-n+1}\) = a. Tính \(\frac{n^2}{n^4+n^2+1}\) theo a
Cho \(A=\frac{n-1}{1}+\frac{n-2}{2}+...+\frac{2}{n-2}+\frac{1}{n-1}\)và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)
Tính \(\frac{A}{B}\)
Cho các số m, n, p thỏa mãn: \(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}=6\)
Tính \(A=m^4+n^4+p^4\)
\(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}=6\)
\(\Leftrightarrow\left(m^2-2+\frac{1}{m^2}\right)+\left(n^2-2+\frac{1}{n^2}\right)+\left(p^2-2+\frac{1}{p^2}\right)=0\)
\(\Leftrightarrow\left(m-\frac{1}{m}\right)^2+\left(n-\frac{1}{n}\right)^2+\left(p-\frac{1}{p}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}m=\frac{1}{m}\\n=\frac{1}{n}\\p=\frac{1}{p}\end{cases}}\Rightarrow m=n=p=1\)
bạn giải dùm mình bài này nhé Tìm x biết: 2+2+22 +23+24+...+22014=2x. Ai giúp mình giải bài này với
1.Tính:
a,\(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-......-\frac{1}{\left(n-1\right).n}\)\(n\in N\)
b,\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-....-\frac{4}{\left(n-4\right).n}\)\(n\in N\)
c\(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-.....-\frac{1}{2^{10}}\)
1 Tính :
a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)
\(=\frac{1}{n}\)
b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow C=1-B\left(1\right)\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
Lấy 2B trừ B ta có :
\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(B=1-\frac{1}{2^{10}}\left(2\right)\)
Thay (2) vào (1) ta có :
\(C=1-\left(1-\frac{1}{10}\right)\)
\(=1-1+\frac{1}{10}\)
\(=\frac{1}{10}\)
Vậy \(C=\frac{1}{10}\)
cho \(A=\frac{n-1}{1}+\frac{n-2}{2}+...+\frac{2}{n-2}+\frac{1}{n-1}\) , \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\) . Tính \(\frac{A}{B}\)
Lời giải:
\(A=\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{n-(n-2)}{n-2}+\frac{n-(n-1)}{n-1}\)
\(=\left(\frac{n}{1}+\frac{n}{2}+\frac{n}{3}+....+\frac{n}{n-1}\right)-(\frac{1}{1}+\frac{2}{2}+...+\frac{n-1}{n-1})\)
\(=n-1+n(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-(n-1)=n(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})\)
\(=nB\)
Do đó: $\frac{A}{B}=n$
1/ Cho: \(\frac{n}{n^2-n+1}=a\) . Tính \(P=\frac{n^2}{n^4+n^2+1}\) theo a.
2/ Giả sử các số hữu tỉ x, y thỏa mãn: x5 + y5 = 2x2y2.
CMR 1 - xy là bình phương của một số hữu tỉ.
Viết chương trình cho phép nhập số tự nhiên N từ bàn phím (với 0<n<=12) rồi thực hiện:
a: Tìm N! = 1.2.3...N
b: tìm S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{N!}\)
c: T = \(1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{1}{n^2}\)
d: S = \(1+\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^4}+...+\frac{1}{n^n}\)
e: \(S_n=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{n}{n+1}\)
f: S = \(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}\)
b)
program hotrotinhoc;
var s: real;
i,n: byte;
function t(x: byte): longint;
var j: byte;
t1: longint;
begin
t1:=1;
for j:=1 to x do
t1:=t1*j;
t1:=t;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/t(i);
write(s:1:2);
readln
end.
c) Đề em ghi sai rồi thế này với đúng :
\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)
program hotrotinhoc;
var t: real;
n,i: byte;
begin
readln(n);
t:=0;
for i:=1 to n do
t:=t+i/(i*i);
write(t:1:2);
readln
end.
a)
uses crt;
var N,S,i : integer;
begin clrscr;
S:=1;
for i:= 1 to N do S:=S*i;
writeln('N!=',S);
readln
end.
Các cái kia tương tự :))
d)
program hotrotinhoc;
var i,n: byte;
s: real;
function mu(x: byte): longint;
var j : byte;
k: longint;
begin
k:=1;
for j:=1 to x do
k:=k*x;
k:=mu;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/mu(i);
write(s:1:2);
readln
end.
e)
program hotrotinhoc;
var s: real;
i,n: byte;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+i/(i+1);
write(s:1:2);
readln
end.
cho A= \(\frac{m}{n^2}.\left(n^2-1\right):\frac{2mn}{n^2+1}\)
B= \(m:\frac{2mn^3-6mn^2+4mn}{n^4-3n^3+3n^2-3n+2}\)
Tính A+B
Cho các số m, n, p thỏa mãn: \(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}=6\)
Tính giá trị biểu thức A= \(m^4+n^4+p^{4.}\)
\(m^2+\frac{1}{m^2}\ge2\sqrt{m^2.\frac{1}{m^2}}=2.\)(BĐT Cauchy)
Tương tự \(n^2+\frac{1}{n^2}\ge2;p^2+\frac{1}{p^2}\ge2.\)
\(\Rightarrow VT\ge6=VP\)
Mà GT, VT=VP=6
=> \(m^2=\frac{1}{m^2},n^2=\frac{1}{n^2},p^2=\frac{1}{p^2}\Leftrightarrow m^4=1,n^4=1,p^4=1\)
=>A=3
Cái bđt đầu không phải Cô-si vì Cô-si là cho 2 số dương, cái đó là từ hằng đẳng thức mà ra
Ta có : \(\left(m-\frac{1}{m}\right)^2\ge0\)
\(\Leftrightarrow m^2-2+\frac{1}{m^2}\ge0\)
\(\Leftrightarrow m^2+\frac{1}{m^2}\ge2\)
Mấy cái kia làm giống Witch Rose là đc
Trần baka: thế \(m^2\)và \(\frac{1}{m^2}\)không dương à?
Áp dụng BĐT AM-GM ta có:
\(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}\ge6.\sqrt[6]{m^2.n^2.p^2.\frac{1}{m^2}.\frac{1}{n^2}.\frac{1}{p^2}}=6\)
...
Cho \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\left(n\in N,n.2\right)\)
Chứng minh A<1/4
Ta có :
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
\(A< \frac{1}{4}-\frac{1}{4n}\)
Lại có \(n>0\) nên \(\frac{1}{4n}>0\)
\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)