Tìm GTNN của:
/x-y-5/+(y-3)^2022+2021
1)Tìm x,y biết: 2x^2+y^2+6x-2xy+9=0
2)Tìm GTNN của bt: A=(x-2021)2+(x+2022)2
3)Cho a là một số nguyên. CMR: P=(a+1)(a+3)(a+5)(a+7)+16 là một số chính phương
\(a,2x^2+y^2+6x-2xy+9=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+6x+9\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-3\end{matrix}\right.\Leftrightarrow x=y=-3\\ b,A=\left(x-2021\right)^2+\left(x+2022\right)^2=x^2-4042x+2021^2+x^2+4044x+2022^2\\ A=2x^2+2x+2021^2+2022^2\\ A=2\left(x^2+x+\dfrac{1}{4}\right)+2021^2+2022^2-\dfrac{1}{2}\\ A=2\left(x+\dfrac{1}{2}\right)^2+2021^2+2022^2-\dfrac{1}{2}\ge2021^2+2022^2-\dfrac{1}{2}\\ A_{max}=2021^2+2022^2-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)\(c,P=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\\ P=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\\ P=\left(a^2+8a+11\right)^2-16+16=\left(a^2+8a+11\right)^2\left(Đpcm\right)\)
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
Cho biểu thức A=(x+5)^2022+|y-2021|+2022.Tìm giá trị nhỏ nhất của A.
A = (x+5)2022 + | y - 2021| + 2022
vì ( x+5)2022 \(\ge\) 0;
|y-2021| \(\ge\) 0
2022 = 2022
Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022
Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)
Tìm GTNN của M
M= |x-2020|+|x-2021|+|x-2022|
Tìm GTNN của M=2021+(x-2022)2021
Mn giúp mk ngay hôm nay nha! Mk cảm ơn trước
\(M=2021+\left(x-2022\right)^{2022}\ge2021\forall x\)
Dấu '=' xảy ra khi x=2022
tìm GTNN của biểu thức : A= (x-1)^2021 + (x-2)^2022
GTNN của biểu thức : A= (x-1)^2021 + (x-2)^2022
Là MAX A = 1 khi \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Tìm GTNN của : C = \(\dfrac{\sqrt{x}+2021}{\sqrt{x}+2022}\)( với x khác 0)
Sửa: \(Đk:x\ge0\)
\(C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{0+2022}=\dfrac{2021}{2022}\\ C_{min}=\dfrac{2021}{2022}\Leftrightarrow x=0\)
\(C=\dfrac{\sqrt{x}+2022}{\sqrt{x}+2022}-\dfrac{1}{\sqrt{x}+2022}=1-\dfrac{1}{\sqrt{x}+2022}\)
Do \(\sqrt{x}+2022\ge2022\Leftrightarrow\dfrac{1}{\sqrt{x}+2022}\le\dfrac{1}{2022}\Leftrightarrow-\dfrac{1}{\sqrt{x}+2022}\ge-\dfrac{1}{2022}\)
\(\Leftrightarrow C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{2022}=\dfrac{2011}{2022}\)
Dấu"=" xảy ra \(\Leftrightarrow x=0\)
√x+2022≥2022⇔1√x+2022≤12022⇔−1√x+2022≥−12022
Tìm các cặp số (x;y) nguyên thoả mãn:
a) |x - 3y| + |y + 4| = 0
b) |x - y - 5| + ( y + 3 ) ²
c) |x + y - 1| + ( y - 2)^4 = 0
d) |x + 3y - 1| + 3.| y + 2|= 0
e) |2021 - x| + 2y - 2022| = 0
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)