Những câu hỏi liên quan
TV
Xem chi tiết
TP
25 tháng 10 2018 lúc 22:14

\(1+4+4^2+4^3+...+4^{58}+4^{59}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(=5+\left(4^2.1+4^2.4\right)+....+\left(4^{58}.1+4^{58}.4\right)\)

\(=5+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(=1.5+4^2.5+....+4^{58}.5\)

\(=\left(1+4^2+...+4^{58}\right).5⋮5\)

Bình luận (0)
DA
Xem chi tiết
KL
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

Bình luận (0)
LM
Xem chi tiết
H24
10 tháng 8 2020 lúc 15:10

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
LM
10 tháng 8 2020 lúc 15:11

Ko cs đầy đủ bn ơi!

Bình luận (0)
 Khách vãng lai đã xóa
H24
10 tháng 8 2020 lúc 15:13

a) 

\(3A=3+3^2+3^3+...+3^{100}\)

=> \(3A-A=\left(3+3^2+...+3^{100}\right)-\left(1+3+...+3^{99}\right)\)

=> \(2A=3^{100}-1\)

=> \(A=\frac{3^{100}-1}{2}\)

=> \(A=\frac{9^{50}-1}{2}\)    => \(\frac{A}{4}=\frac{9^{50}-1}{8}\)

Có: \(9\equiv1\left(mod8\right)\)

=> \(9^{50}\equiv1\left(mod8\right)\)

=> \(9^{50}-1⋮8\)

=> \(\frac{9^{50}-1}{8}\in Z\)

=> \(\frac{A}{4}\in Z\)=> \(A⋮4\)

(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
PC
18 tháng 10 2017 lúc 12:06

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=1.21+4^3.21+...+4^57.21

A=(1+4^3+...+4^57).21

Vậy A chia hết cho 21

Bình luận (0)
PN
6 tháng 11 2024 lúc 19:32

C= 4(1+4+4^2+4^3+4^4+...+4^59) 

C= 4+4^2+4^3+4^4+...+4^59

C=(4.1+4.4+4.4^2) +(4^3.1+4^3.4+4^3.4^2) +... +(4^57.1+4^57.4+4^57.4^2) 

C= 4.(1+4+16) +4^3(1+4+16) +... +4^57.(1+4+16) 

C=4.21 + 4^3.21+4^57.21

Suy ra C chia hết cho 21

Bình luận (0)
TM
Xem chi tiết
TG
17 tháng 12 2021 lúc 8:38

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
IY
26 tháng 8 2018 lúc 10:21

A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)

A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)

A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)

A= 21 + 4^3.21 + ...+ 4^57.21

A = 21.(1+4^3+...+4^57) chia hết cho 21

phần b đề là j z bn

Bình luận (0)
TT
Xem chi tiết
H9
5 tháng 11 2023 lúc 15:30

\(A=3+3^2+...+3^{2016}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2015}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{2015}\right)\)

Vậy A chia hết cho 4

_____________

\(A=3+3^2+3^3+...+3^{2016}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2014}\cdot\left(1+3+9\right)\)

\(A=13\cdot\left(3+3^4+...+3^{2014}\right)\)

Vậy A chia hết cho 13

Bình luận (0)
H24
Xem chi tiết
NH
20 tháng 12 2015 lúc 10:22

tích từ bài từng câu a , b , ... ra đi

Bình luận (0)
BT
Xem chi tiết
TG
17 tháng 12 2021 lúc 8:44

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)

A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)

A=5+42.5+...+448.5A=5+42.5+...+448.5

A=5(1+42+...+448)A=5(1+42+...+448)

⇒A⋮5

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
k cho mik đi mik cảm ơn

Bình luận (0)
 Khách vãng lai đã xóa