Những câu hỏi liên quan
HH
Xem chi tiết
RR
17 tháng 5 2018 lúc 22:04

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

Bình luận (0)
TV
18 tháng 5 2018 lúc 19:16

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

Bình luận (0)
NP
Xem chi tiết
NB
25 tháng 5 2016 lúc 17:37

Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

Bình luận (1)
TK
24 tháng 6 2023 lúc 13:51

Áp dụng tính chất của dãy tỉ số bằng nhau:

ab/ac =b/c= ab-b/bc-c =10a/10b

=>b² = a.c

Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.

=> b ∈ 1; 3; 7; 9

Ta xét các chữ số:

- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau ) 

- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )

- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )

- Với b = 9 thì 9²  a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )

Vậy abc = 139.

Bình luận (0)
NN
Xem chi tiết
TH
27 tháng 7 2018 lúc 11:01

a) \(1:\overline{0,abc}=a+b+c\)

\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)

\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)

Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125

Bình luận (3)
NN
Xem chi tiết
NQ
30 tháng 6 2017 lúc 22:10

áp dụng bất đẳng thức côsi

a+b >= 2\(\sqrt{ab}\)

<=> (a+b).\(\sqrt{c}\)>=2.\(\sqrt{abc}\)                      

Mà \(\sqrt{abc}\)= (a+b) .\(\sqrt{c}\) nên a=b , \(\sqrt{c}\)= 2.\(\sqrt{c}\) 

<=> c = 0 và với mọi a,b 

Bình luận (0)
TA
30 tháng 6 2017 lúc 22:13

bạn Nguyễn Anh Quân hiểu sai rồi, là \(\sqrt{\overline{abc}}\)  chứ ko phải  \(\sqrt{abc}\)  đâu nha

Bình luận (0)
TA
Xem chi tiết
VT
Xem chi tiết
HB
26 tháng 12 2017 lúc 10:19

a;b;c thuộc rỗng

Bình luận (0)
H24
Xem chi tiết
VK
Xem chi tiết
VK
21 tháng 7 2016 lúc 8:19
help !!!!!
Bình luận (0)
VK
21 tháng 7 2016 lúc 10:23
HELP !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bình luận (0)
VK
22 tháng 7 2016 lúc 16:07

khocroi

Bình luận (0)
VN
Xem chi tiết
H9
30 tháng 9 2023 lúc 14:11

loading...

Bình luận (0)