Những câu hỏi liên quan
KG
Xem chi tiết
NA
Xem chi tiết
TP
23 tháng 2 2019 lúc 22:08

\(g\left(x\right)=x^2+x-2=x^2-2x+x-2=x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x+1\right)\)

Để \(f\left(x\right)⋮g\left(x\right)\)thì :

\(f\left(x\right)=g\left(x\right)\cdot Q\left(x\right)\)hay \(ax^3+bx^2+10x-4=\left(x-2\right)\left(x+1\right)\cdot Q\left(x\right)\)

Vì đảng thức đúng với mọi x. Do đó :

+) đặt \(x=2\)ta có :

\(a\cdot2^3+b\cdot2^2+10\cdot2-4=\left(2-2\right)\left(2+1\right)\cdot Q\left(x\right)\)

\(\Leftrightarrow8a+4b+16=0\)

\(\Leftrightarrow4\left(2a+b\right)=-16\)

\(\Leftrightarrow2a+b=-4\)(1)

+) Đặt \(x=-1\)ta có :

\(a\cdot\left(-1\right)^3+b\cdot\left(-1\right)^2+10\cdot\left(-1\right)-4=\left(-1-2\right)\left(-1+1\right)\cdot Q\left(x\right)\)

\(\Leftrightarrow-a+b-14=0\)

\(\Leftrightarrow-a+b=14\)(2)

Lấy (1) trừ (2) ta được :

\(2a+b-\left(-a+b\right)=-4-14\)

\(\Leftrightarrow2a+b+a-b=-18\)

\(\Leftrightarrow3a=-18\)

\(\Leftrightarrow a=-6\)

\(6+b=14\Leftrightarrow b=8\)

Vậy \(a=-6;b=8\)

Bình luận (0)
TP
19 tháng 2 2020 lúc 21:26

Vì 2 đường thẳng cắt nhau ở B(x;y) nên ta có:

\(\hept{\begin{cases}y=-2x+2\\x^2+y^2=40\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TP
21 tháng 2 2020 lúc 9:52

Gọi số sp dự định làm trong một ngày là a ( sp ) (a >0)

=> số sp thực tế làm 1 ngày là a + 10 ( sp )

Số ngày dự định làm xong là : \(\frac{240}{a}\) ( ngày )

Số ngày thực tế hoàn thành là : \(\frac{240}{a+10}\) ( ngày )

Ta có pt: \(\frac{240}{a+10}+2=\frac{240}{a}\)

\(\Rightarrow a=30\)( t/m )

Vậy..

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
YC
Xem chi tiết
GD

em chưa cho đa thức f(x) và g(x) nà

Bình luận (1)
NT
29 tháng 3 2023 lúc 22:57

a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)

\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)

\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)

Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0

=>a=-6 và b=-14

b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)

\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)

Để f(x) chia hết g(x) thì a-5=0

=>a=5

 

 

Bình luận (0)
PP
Xem chi tiết
H24
26 tháng 11 2019 lúc 19:07

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

Bình luận (0)
 Khách vãng lai đã xóa
OM
26 tháng 11 2019 lúc 19:10

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

Bình luận (0)
 Khách vãng lai đã xóa
OM
26 tháng 11 2019 lúc 19:11

sai r.chờ tí,rảnh t làm lại cho,giờ làm câu 2 đã

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
17 tháng 4 2022 lúc 10:17

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Bình luận (0)
DP
17 tháng 4 2022 lúc 10:32

ko biết !!!

Bình luận (0)
NL
17 tháng 4 2022 lúc 16:50

\(f\left(0\right)=2\Rightarrow c=2\)

\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)

\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)

\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)

\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
TQ
Xem chi tiết
NH
Xem chi tiết