Những câu hỏi liên quan
H24
Xem chi tiết
EO
Xem chi tiết
NL
7 tháng 1 2021 lúc 17:07

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

Bình luận (0)
TD
Xem chi tiết
TD
Xem chi tiết
HN
8 tháng 8 2016 lúc 16:58

a ) Đặt \(A=\sqrt{x-2}+\sqrt{4-x}\). Nhận xét A > 0

\(\Rightarrow A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Vì \(\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\Rightarrow A^2\ge2\)

\(\Rightarrow A\ge\sqrt{2}\)(Vì A > 0)
Dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}2\le x\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy ....

b) Tương tự .

c) Đề phải là tìm GTLN 

\(C=\left|x\right|\sqrt{1-x^2}=\sqrt{x^2\left(1-x^2\right)}\) . Áp dụng bđt Cauchy : \(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)

Dấu đẳng thức xảy ra khi và chỉ khi \(x^2=1-x^2\Leftrightarrow x=\frac{\sqrt{2}}{2}\)hoặc \(x=-\frac{\sqrt{2}}{2}\)

Vậy ....

GTNN dễ thấy bằng 0 tại x = 0 hoặc x = -1 hoặc x = 1 

Bình luận (0)
TN
8 tháng 8 2016 lúc 19:56

a)Ta cần chứng minh BĐT \(\sqrt{T}+\sqrt{H}\ge\sqrt{T+H}\)

2 vế luôn dương bình phương ta có:

\(\left(\sqrt{T}+\sqrt{H}\right)^2\ge\left(\sqrt{T+H}\right)^2\)

\(T+H+2TH\ge T+H\)

\(2TH\ge0\) (luôn đúng do \(TH\ge0\))

Dấu = xảy ra khi \(TH\ge0\)

Áp dụng ta có \(\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

Dấu = xảy ra khi (x-2)(4-x)\(\ge\)0 suy ra \(\orbr{\begin{cases}2\le0\le4\\\left(x-2\right)\left(4-x\right)=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy ....

b) Áp dụng tương tự ta có:

\(\sqrt{7-x}+\sqrt{x-5}\ge\sqrt{7-x+x-5}=\sqrt{2}\)

Dấu = khi (7-x)(x-5)\(\ge\)0 suy ra \(\orbr{\begin{cases}x\le5\le7\\\left(7-x\right)\left(x-5\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=7\\x=5\end{cases}}\)

Vậy...

c)Ta thấy \(\left|x\right|\sqrt{1-x^2}\ge0\)

Dấu = khi x=0 hoặc x=±1

Bình luận (0)
TP
Xem chi tiết
NM
7 tháng 12 2021 lúc 7:14

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

Bình luận (1)
VA
Xem chi tiết
MG
Xem chi tiết
EC
Xem chi tiết
KS
1 tháng 12 2019 lúc 11:57

A= \(|\sqrt{x^2}+\sqrt{1}-9|+|\sqrt{x^2}+\sqrt{1}-12|\)

A=\(|x+1-9|+|x+1-12|\)

A=\(|x-8|+|x-11|\)

TH1: x<0

=> A= (-x)-8 + (-x) -11

A=(-x-x)-(8+11)

A=-2x-19

TH2:x>0

=> A=x-8+x-11

A=(x+x)-(8+11)

A=2x-19

Tương tự x=0 sau đấy cậu KL nhé, phần sau mình lười

    
Bình luận (0)
 Khách vãng lai đã xóa
KN
1 tháng 12 2019 lúc 12:14

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):

\(\left|\sqrt{x^2+1}-9\right|+\left|\sqrt{x^2+1}-12\right|\)\(=\left|\sqrt{x^2+1}-9\right|+\left|12-\sqrt{x^2+1}\right|\)

\(\ge\left|\left(\sqrt{x^2+1}-9\right)+\left(12-\sqrt{x^2+1}\right)\right|=3\)

Vậy \(A_{min}=3\Leftrightarrow\left(\sqrt{x^2+1}-9\right)\left(12-\sqrt{x^2+1}\right)\ge0\)

\(TH1:\hept{\begin{cases}\sqrt{x^2+1}-9\ge0\\12-\sqrt{x^2+1}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\ge81\\x^2+1\le144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge80\\x^2\le143\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{80}\le x\le\sqrt{143}\\-\sqrt{80}\ge x\ge-\sqrt{143}\end{cases}}\)

\(TH2:\hept{\begin{cases}\sqrt{x^2+1}-9\le0\\12-\sqrt{x^2+1}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\le81\\x^2+1\ge144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\le80\\x^2\ge143\end{cases}}\left(L\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết