Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
NN
Xem chi tiết
H24
27 tháng 3 2016 lúc 9:19

vì a+b+c=0 nên a,b,c lớn nhất chỉ có thể bằng ko,nên ab+2bc+3ca chỉ có thể < hoặc bằng 0

Bình luận (0)
LL
Xem chi tiết
IN
21 tháng 3 2020 lúc 17:33

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
H24
Xem chi tiết
NL
25 tháng 7 2021 lúc 17:42

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

Bình luận (0)
NL
25 tháng 7 2021 lúc 17:45

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)

Bình luận (0)
DH
Xem chi tiết
PL
Xem chi tiết
QH
Xem chi tiết
BV
31 tháng 8 2016 lúc 14:30

\(C=ab+2bc+3ca=ab+ca+2bc+2ca\)
   \(=a\left(b+c\right)+2c\left(a+b\right)\)  
   \(=a\left(1-a\right)+2c\left(1-c\right)=-a^2+a-2c^2+2c\)
    \(=-\left(a-\frac{1}{2}\right)^2-2\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}.\)
Vậy GTLN của C = \(\frac{3}{4}\)khi \(a=\frac{1}{2};c=\frac{1}{2};b=0.\)

Bình luận (0)
TH
3 tháng 9 2016 lúc 18:50

<br class="Apple-interchange-newline"><div id="inner-editor"></div>C=ab+2bc+3ca=ab+ca+2bc+2ca
   =a(b+c)+2c(a+b)  
   =a(1−a)+2c(1−c)=−a2+a−2c2+2c
    =−(a−12 )2−2(c−12 )2+34 ≤34 .
Vậy GTLN của C = 34 khi a=12 ;c=12 ;b=0.

Bình luận (0)
H24
Xem chi tiết
MS
31 tháng 3 2018 lúc 21:22

\(ab+2bc+3ac\)

\(=ab+2bc+ac+2ac\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2b^2\le0\) (đúng)

Dấu "=" khi \(x=y=z=0\)

Bình luận (2)
VT
31 tháng 3 2018 lúc 21:39

Ta có:

a+b+c=0

=> a + b = -c

=> (a+b)2 = c2

=> a2 + 2ab + b2 = c2

=> ab = \(\dfrac{c^2-a^2-b^2}{2}\) (1)

Tương tự ta có: a2 + 2ac + c2 = b2

b2 + 2bc + c2 = a2

=> ac = \(\dfrac{b^2-a^2-c^2}{2}\) => 3ac = \(\dfrac{3b^2-3a^2-3c^2}{2}\) (2)

bc = \(\dfrac{a^2-b^2-c^2}{2}\) => 2bc = a2 - b2 - c2 (3)

Thay (1), (2), (3) vào bdt cần ch/m, ta có:

ab + 2bc + 3ac ≤ 0

<=> \(\dfrac{c^2-a^2-b^2}{2}\) + a2 - b2 - c2 + \(\dfrac{3b^2-3a^2-3c^2}{2}\)

<=> c2 - a2 - b2 + 2a2 - 2b2 - 2c2 + 3b2 - 3a2 - 3c2 ≤ 0

<=> -2a2 -4c2 ≤ 0

<=> -2(a2 + 2c2) ≤ 0 (Bdt đúng với mọi a, c)

Dau "=" xay ra khi a2 + 2c2 = 0

<=> a = c = b = 0.

Bình luận (0)