Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Cho a,b,c thỏa mãn a+b+c=0

CMR: ab+2bc+3ca\(\le\)0

H24
25 tháng 2 2019 lúc 15:30

\(ab+2bc+3ac\)

\(=\left(ab+ac\right)+\left(2bc+2ac\right)\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2c^2\le0\)

Bình luận (0)
IN
21 tháng 3 2020 lúc 17:34

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NN
Xem chi tiết
NN
Xem chi tiết
LL
Xem chi tiết
NM
Xem chi tiết
IL
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết