Tim x , y \(\inℤ\) , biết :
\(\left(x+2\right)^2+\left(y+2\right)^2+\left(x-y\right)^2=2\)
Tìm \(x\),\(y\inℤ\) biết \(y=\frac{5x+3}{x\left(y^2+1\right)+y\left(x^2+1\right)+x^2+y^2+2xy}\)
Ta có \(y=\frac{5x+3}{xy\left(x+y\right)+x+y+\left(x+y\right)^2}=\frac{5x+3}{\left(x+y\right)\left(xy+1+x+y\right)}=\frac{5x+3}{\left(x+y\right)\left(y+1\right)\left(x+1\right)}\)
Mà \(x,y\in Z\)
=> \(\frac{5x+3}{x+1}=5+\frac{-2}{x+1}\)là số nguyên
=> \(x+1\in\left\{\pm1;\pm2\right\}\)
=> \(x\in\left\{-3;-2;0;1\right\}\)
+ x=-3
=> \(y=\frac{6}{\left(y-3\right)\left(y+1\right)}\)
=> \(y^3-2y^2-3y-6=0\)(không có giá trị nguyên nào của y tm)
+ x=-2
=> \(y=\frac{7}{\left(y-2\right)\left(y+1\right)}\)=> \(y^3-y^2-2y-7=0\)(không có gt y nguyên tm)
+ \(x=0\)
=> \(y=\frac{3}{y\left(y+1\right)}\)=> \(y^3+y^2-3=0\)(không có gt y nguyên tm)
+ x=1
=> \(y=\frac{4}{\left(y+1\right)\left(y+1\right)}\)=> \(y^3+2y^2+2y-4=0\)(loại)
Vậy không có giá trị x,y nguyên TM đề bài
Tìm \(x,y\inℤ\)biết
\(\left(x-2\right)^2.\left(y-1\right)=-8\)
\((x-2)^2\cdot(y-1)\varepsilonƯ(8)=[1,2,4,8,-1,-2,-4,-8]\)8
ta có bảng sau
\((x-2)^2\) | 1 | 2 | 4 | 8 | -1 | -2 | -4 | -8 |
\(\left(y-1\right)\) | 8 | 4 | 2 | 1 | -8 | -4 | -2 | -1 |
\(x\) | 3 | |||||||
y |
x và y còn lại tự tính nhé
Bài 1
\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{x.\left(x+1\right)}=\frac{49}{50}\)
\(\frac{2x+3}{x-1}\)có giá trị là số nguyên \(\left(x\inℤ,x\ne0\right)\)
\(\frac{x-4}{y-3}=\frac{4}{3}\)và \(x-y=5\)\(\left(y\ne3\right)\)
Tìm x,y nguyên dương để: \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
\(\left(x+3\right)^2+\left(y-1\right)^2< 4\left(x;y\inℤ\right)\)
\(\left(x+3\right)^2.\left(y-3\right)=-4\left(x;y\inℤ\right)\)
đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Tìm x, y nguyên dương để : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
Ta có : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\) => \(\frac{5}{8}-\frac{y}{2}=\frac{1}{x}\)
=> \(\frac{5-4y}{8}=\frac{1}{x}\) => \(\left(5-4y\right)x=8\)
=> 5 - 4y; x là ước của 8
Ta có bảng :
5 - 4y | 1 | 2 | 4 | 8 |
x | 8 | 4 | 2 | 1 |
y | 1 | 3/4 | 1/4 | -3/4 |
Vì x,y nguyên dương => x = 8 ; y = 1
Vậy x = 8; y = 1 là 2 giá trị cần tìm
Study well ! >_<
Tìm x,y \(\inℤ\)sao cho:
\((x+1)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\)
C=\(x\)\(\left[x^2-y\right]\)x\(\left[x^3-2y^2\right]\)x\(\left[x^4-3y^3\right]\)x\(\left[x^5-4y^4\right]\)tại \(x=2,y=-2\)
D=\(x^2\left[x+y\right]\)-\(y^2\)\(\left[x+y\right]\)+\(\left[x^2-y^2\right]\)+2\(\left[x+y\right]\)+3 biết rằng x+y+1=0
M=\(\left[x+y\right]\)x\(\left[y+z\right]\)x\(\left[x+z\right]\)biết ranhwfx+y+z=xyz=2
a: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-2\cdot4=0\)
=>\(C=x\left(x^2-y\right)\left(x^3-2y^2\right)\left(x^4-3y^3\right)\left(x^5-4y^4\right)=0\)
b: x+y+1=0
=>x+y=-1
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=x^2\cdot\left(-1\right)-y^2\left(-1\right)+\left(x^2-y^2\right)+2\cdot\left(-1\right)+3\)
\(=-x^2+y^2+x^2-y^2-2+3\)
=1
tim cap (x,y ) thoa man
\(x^2.\left(x+3\right)+y^2.\left(y+5\right)-\left(x+y\right).\left(x^2-xy+y^2\right)=0\)
x2.(x+3)+y2.(y+5)−(x+y).(x2−xy+y2)=0
<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)
<=> \(3x^2+5y^2=0\)
ta thấy \(3x^2\ge0\)với mọi x
\(5y^2\ge0\) với mọi y
=> \(3x^2+5y^2\ge0\)
=> x=0 và y=0
vậy cặp số (x;y)=(0;0)
Tìm \(x\),\(y\inℤ\) biết \(y=\frac{5x+3}{x\left(y^2+1\right)+y\left(x^2+1\right)+x^2+y^2+2xy}\)
tìm \(x,y\inℤ\)thỏa mãn : \(\left(y+1\right)^4+y^4=\left(x+1\right)^2+x^2\)
Tim cap(x;y) \(\varepsilon Z\) de B=-3
\(B=\frac{x^2}{\left(x+y\right)\left(x-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)