cho a/b=b/c=c/d CM ad=bc
cho (a+b+c+d)(a-b-c+d)=(a-b-c+d)(a+b-c-d)
CM: ad=bc
Cho tứ giác ABCD có góc A=góc B=90 độ a)Cm AD//BC b)Cho D=3C.Tính C,D c)Cho D-C=30 độ.Tính C,D
a) Có AD ⊥ AB( góc A vuông)
BC ⊥ AB( góc B vuông)
=> AD // BC
b) Có tứ giác ABCD= 360 độ
mà A = B= 90 độ
=> C + D= ABCD - A - B
= 360 độ - 90 độ - 90 độ
= 180 độ
Có D = 3C và C + D = 180 độ
=> C = 45 độ
=> D = 135 độ
c) Có ABCD= 360 độ
A = B= 90 độ
=> C + D= 180 độ
=> D =180 độ - C
+) D - C = 30 độ
<=> 180 độ - C - C = 30 độ
<=> 2C= 150 độ
<=> C = 75 độ
=> D = 105 độ
Vậy a) AD // BC
b) C = 45 độ
D = 135 độ
c) C = 75 độ
D = 105 độ
Bài 1: 1) Trên tia Ax lấy các điểm B, C, D theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.
a) Tính các tỷ số số AB/ BC và BC/CD
b) Chứng minh BC2 = AB.CD
2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.
a) Chứng minh AD/BD = AE/EC
b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.
Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.
a) Chứng minh AD/AB = AE/AC
b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC
Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:
a) Tỷ số DE/AE
b) Độ dài các đoạn thẳng AE, DE và AD.
Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC
b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.
cho a;b;c;d>0 sao cho a>c+dva b>c+d
cm :ab>ad+bc
Cho 4 điểm A , B , C , D . Biết AB = 2 cm , BC = 2 cm , AC = 5 cm , CD = 1 cm , AD = 6 cm .
Chứng tỏ rằng A , B , C , D thẳng hàng
Cho tam giác ABC cân tại A. Có AD là phân giác góc A (D thuộc BC)
a/ Cm tam giác ABD = tam giác ACD
b/ Cm Ad vuông góc BC
c/ Cho AB = 10 cm, BC = 16 cm. Tính AD
a,Xét tam giác abd và tam tam giác acd có
ab=ac
góc bad= góc cad
adchung
=>tam giác abd = tam giác acd (c.g.c)
b,vì tam giác abd=tam giác acd
=>góc adb =góc adc
mà góc adb + góc adc=180 độ
=>ad vuông góc với bc
c,bd=16:2=8cm
áp dụng định lí PY-TA-GO vào tam giác abd
ta có
ab^2=ad^2+bd^2
=>ad^2=ab^2-bd^2
=>ad=6cm
a) Xet tam giac ADB va tam giac ADC ta co
BA=CA theo gia thiet
goc BAD=goc ACD theo gia thiet
canh chung AD
nen suy ra:tam giac ADB=tam giac ADC theo truong hop canh goc canh
b) tu cau a ta co goc ADB= goc ADC hai goc tung ung
nen suy ra GOC ADB= gocADC =180:2=90DO
Vay ta co AD vuong goc voi BC
c)vi BD=1/2BC nen ta co BD =16:2 =8
vay theo dinh ly pi ta go ta co 10^2+8^2=100+64=164
nen ta co ADbang can bac 2 cua 164
cho a,b,c,d là các số nguyên .cm rằng A=[(a-c)^2+(b-d)^2](a^2+b^2)-(ad-bc)^2 là số chính phương.
Cho điểm B nằm giữa a và b, c nằm giữa b và d . Biết ab=3 cm , ad =8cm cd =2 cm tính bc
cho tam giác ABC vuông tại A.Có góc B lớn hơn góc C. Trên BC lấy D sao cho BD=BA. Phân giác góc B cắt AC tại M, cắt AD tại E. Qua D kẻ đường thẳng song song với AC cắt AB tại I. Tia AK cắt BC tại G
a)CM E là trung điểm AD
b)CM tam giác MAD cân
c)CM AG vuông góc với BC
d)CM IG song song với AD
a: Xét ΔBAM và ΔBDM có
BA=BD
gócABM=góc DBM
BM chung
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
mà BA=BD
nên BM là đường trung trực của AD
=>BM\(\perp\)AD tại trung điểm của AD
=>E là trug điểm của AD
b: Xét ΔMAD có MA=MD
nên ΔMAD cân tại M
c: Điểm K ở đâu vậy bạn?