Tìm a:
A= \(\dfrac{1}{1x4}\)+\(\dfrac{1}{1x7}\)+\(\dfrac{1}{7x10}\)+.....+\(\dfrac{1}{100x103}\)
F=\(\dfrac{1}{1x4}\)+\(\dfrac{1}{4x7}\)+....+\(\dfrac{1}{97x100}\)+\(\dfrac{1}{100x103}\)
Giờ anh đang bận hồi nữa anh giúp cho nha
\(F=\dfrac{1}{x}\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}+\dfrac{1}{100.103}\right)\)
\(3F=\dfrac{1}{x}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}+\dfrac{3}{100.103}\right)\)
\(F=\dfrac{\dfrac{1}{x}\left(\dfrac{1}{3}-\dfrac{1}{103}\right)}{3}=\dfrac{\dfrac{1}{x}.\dfrac{100}{309}}{3}=\dfrac{\dfrac{100x}{309}}{3}=\dfrac{100x}{927}\)
\(F=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{103}\right)=\dfrac{1}{3}.\dfrac{102}{103}=\dfrac{204}{309}\)
Tính tổng sau
F= \(\dfrac{1}{1x4}\)+\(\dfrac{1}{4x7}\)+....+\(\dfrac{1}{97x100}\)+\(\dfrac{1}{100x103}\)
\(F=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{100\cdot103}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{102}{103}=\dfrac{34}{103}\)
Câu 1: Tính nhanh: a/ \(\dfrac{3}{11x12}\)+\(\dfrac{3}{12x13}\)+\(\dfrac{3}{13x14}\)+\(\dfrac{3}{14x15}\)
b/\(\dfrac{2}{2X3}\)+\(\dfrac{2}{3x4}\)+\(\dfrac{2}{4x5}\)+\(\dfrac{2}{5x6}\)
c/ \(\dfrac{3}{1x4}\)+\(\dfrac{3}{4x7}\)+\(\dfrac{3}{7x10}\)+................+\(\dfrac{3}{97x100}\)
d/ \(\dfrac{3}{2x5}\)+\(\dfrac{3}{5x8}\)+\(\dfrac{3}{8x11}\)+.............+\(\dfrac{3}{100x103}\)
e/ \(\dfrac{1}{1x5}\)+\(\dfrac{1}{5x10}\)+\(\dfrac{1}{10x15}\)+..................+\(\dfrac{1}{95x100}\)
Toán lớp 5 nha, giúp với mai mình học r, đúng mk tick cho.
a/ \(\dfrac{3}{11.12}+\dfrac{3}{12.13}+\dfrac{3}{13.14}+\dfrac{3}{14.15}\)
\(=3\left(\dfrac{1}{11.12}+\dfrac{1}{12.13}+\dfrac{1}{13.14}+\dfrac{1}{14.15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{15}\right)\)
\(=\dfrac{4}{55}\)
b/ \(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}\)
\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(=\dfrac{2}{3}\)
c/ \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+.....+\dfrac{3}{97.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{97}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
d/ \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.....+\dfrac{3}{100.103}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+....+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=\dfrac{1}{2}-\dfrac{1}{103}\)
\(=\dfrac{101}{206}\)
e/ Đặt :
\(A=\dfrac{1}{1.5}+\dfrac{1}{5.10}+....+\dfrac{1}{95.100}\)
\(\Leftrightarrow5A=\dfrac{5}{1.5}+\dfrac{5}{5.10}+....+\dfrac{5}{95.100}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+....+\dfrac{1}{95}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{100}:5=\dfrac{99}{500}\)
Dấu . là dấu nhân nhé <3
Rút gọn biểu thức A:
A = \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)với \(x\ge0;x\ne1\)
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\\ =\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\\ =\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\\ =\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\\ =\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
11/1x4+11/4x7+11/7x10+...11/100x103
1/5x9+1/9x13+1/13x17+...+1/2450
mình cần gấp nhé
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)
Tự tính
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
= \(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\frac{102}{103}\)
= \(\frac{374}{103}\)
A=\(\dfrac{3}{5x8}\)+\(\dfrac{3}{8x11}\)+\(\dfrac{3}{11x14}\)+....+\(\dfrac{3}{100x103}\)
\(A=\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{100\cdot103}\)
\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=\dfrac{98}{515}\)
Cho: S=\(\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+...+\frac{3}{100x103}\). Chứng minh S<1
S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103
S=1/1-1/103
S=102/103
Vì 102/103<1 nên S<1
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{100\cdot103}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(S=1-\frac{1}{103}\)
\(S=\frac{102}{103}< 1\)
\(\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+.......+\frac{3}{100x103}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}....+\frac{1}{100}-\frac{1}{103}\)
\(=\frac{1}{1}-\frac{1}{103}\)
=\(\frac{102}{103}\)
Tính : 2/1x4+2/4x7+2/7x10+......+2/100x103
Đặt \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\frac{102}{103}\)
\(\Rightarrow B=\frac{68}{103}\)
Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\cdot\frac{102}{103}\)
\(A=\frac{68}{103}\)
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)
\(=\frac{2}{3}\cdot\frac{102}{103}=\frac{68}{103}\)
tìm tích rồi tìm số nghịch đảo của chúng
T=(1- \(\dfrac{1}{3}\) )(1- \(\dfrac{1}{5}\))(1-\(\dfrac{1}{7}\) )(1- \(\dfrac{1}{9}\) )(1- \(\dfrac{1}{11}\) )(1- \(\dfrac{1}{2}\))(1- \(\dfrac{1}{4}\))(1- \(\dfrac{1}{6}\))(1- \(\dfrac{1}{8}\))(1- \(\dfrac{1}{10}\) )
Ta có: \(P=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{11}\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{-10}{11}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{9}{10}\cdot\dfrac{10}{11}\)
\(=\dfrac{1}{11}\)