tính \(\dfrac{x+7}{x^2-x-6}+\dfrac{x+10}{x^2+x-2}+\dfrac{x-7}{x^2-4x+3}\)
Giải các phương trình sau:
a) \(\dfrac{1}{2x-6}+\dfrac{3x-10}{x^2-4x+3}=\dfrac{7}{2}\)
b) \(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(a.ĐK:x\ne3;1\)
\(\Rightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)+2\left(3x-10\right)}{2\left(x-1\right)\left(x-3\right)}=\dfrac{7\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow x-1+6x-20=7\left(x^2-4x+3\right)\)
\(\Leftrightarrow7x-21=7x^2-28x+21\)
\(\Leftrightarrow7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
b.\(ĐK:x\ne2;4\)
\(\Rightarrow\dfrac{x-1}{x-2}-\dfrac{x+3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(4-x\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow4x-x^2-4+x-x^2+2x-3x+6-2=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow7\left(x^2-4x+3\right)=x-1+6x-20=7x-21\)
\(\Leftrightarrow\left(x-3\right)\left(7x-7\right)-7\left(x-3\right)=0\)
=>(x-3)(7x-14)=0
=>x=3(loại) hoặc x=2(nhận)
b: \(\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=-2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=-2\)
\(\Leftrightarrow2x^2-4x=0\)
=>2x(x-2)=0
=>x=0(nhận) hoặc x=2(loại)
Giải phương trình:
a) \(\dfrac{5}{x^2+x-6}\) - \(\dfrac{2}{x^2+4x+3}\) = \(\dfrac{-3}{2x-1}\)
b) \(\dfrac{4x^2+16}{x^2+6}\) = \(\dfrac{3}{x^2+1}\) + \(\dfrac{5}{x^2+3}\)+ \(\dfrac{7}{x^2+5}\)
a) ĐKXĐ: \(x\notin\left\{-3;2;-1;\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{2}{\left(x+3\right)\left(x+1\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\dfrac{2\left(x-2\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5x+5-2x+4}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{3x+9}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
Suy ra: \(\left(x+1\right)\left(x-2\right)=1-2x\)
\(\Leftrightarrow x^2-x-2-1+2x=0\)
\(\Leftrightarrow x^2+x-3=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-3\right)=13\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{13}}{2}\left(nhận\right)\\x_2=\dfrac{-1+\sqrt{13}}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{-1-\sqrt{13}}{2};\dfrac{-1+\sqrt{13}}{2}\right\}\)
thực hiện phép tính \(\dfrac{x+7}{x^2-x-6}+\dfrac{x+10}{x^2+x-2}+\dfrac{\left(x-7\right)}{x^2-4x+3}\)
\(=\dfrac{x+7}{\left(x-3\right)\left(x+2\right)}+\dfrac{x+10}{\left(x+2\right)\left(x-1\right)}+\dfrac{x-7}{\left(x-1\right)\left(x-3\right)}\)
\(=\dfrac{x^2+6x-7+x^2+7x-30+x^2-5x-14}{\left(x-1\right)\left(x-3\right)\left(x+2\right)}\)
\(=\dfrac{3x^2+8x-51}{\left(x-1\right)\left(x-3\right)\left(x+2\right)}\)
\(=\dfrac{3x^2-9x+17x-51}{\left(x-1\right)\left(x-3\right)\left(x+2\right)}=\dfrac{\left(3x+17\right)}{\left(x-1\right)\left(x+2\right)}\)
giải các phương trinh sau
1/ \(\dfrac{4x-4}{3}-\dfrac{7-x}{5}\)
2/ \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)
3/ \(\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\)
4/ \(\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\)
5/ \(\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\)
\(1,\dfrac{4x-4}{3}=\dfrac{7-x}{5}\\ \Leftrightarrow5\left(4x-4\right)=3\left(7-x\right)\\ \Leftrightarrow20x-20=21-3x\\ \Leftrightarrow17x=41\Leftrightarrow x=\dfrac{41}{17}\)
\(2,\dfrac{3x-9}{5}=\dfrac{3-x}{2}\\ \Leftrightarrow6x-18=15-5x\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=3\)
\(3,\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\\ \Leftrightarrow\dfrac{6x-3-15+5x}{15}=1\\ \Leftrightarrow11x-18=1\\ \Leftrightarrow x=\dfrac{19}{11}\)
\(4,\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\\ \Leftrightarrow2x-10+9x+12=5x+2\\ \Leftrightarrow6x=0\Leftrightarrow x=0\)
\(5,\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\\ \Leftrightarrow5x-15+4x+6=2x+5\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=2\)
Tick nha
2: Ta có: \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)
\(\Leftrightarrow6x-18=15-5x\)
\(\Leftrightarrow11x=33\)
hay x=3
Giải các bất phương trình sau:
a) -2x2 + 7x - 10 < 0
b) \(\dfrac{1+x}{1-x}\) ≤ 2
c) \(\dfrac{x}{x-2}-\dfrac{2}{x-3}\) > 1
d) (x2 + 4x + 10)2 - 7(x2 + 4x + 11) + 7 < 0
a) 6-7x+7=-8x+12
b) \(\dfrac{\text{4x-1}}{8}\)\(\)=\(\dfrac{6-x}{2}\)-\(\dfrac{1}{4}\)
c) 2x(x-3)+7x-21+0
d) \(\dfrac{x}{x-3}\)+\(\dfrac{x-2}{x+3}\)\(\dfrac{2\left(x^2+6\right)}{x^2-9}\)
Tìm x, biết:
a) \(x:\dfrac{6}{13}=\dfrac{13}{7}\) b) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{1}{5}\) c) \(\left(\dfrac{3}{10}-x\right):\dfrac{2}{5}=\dfrac{3}{5}\) d) \(\dfrac{2}{3}.x-\dfrac{7}{6}=\dfrac{5}{2}\)
a) \(x:\dfrac{6}{13}=\dfrac{13}{7}\\ \Rightarrow x=\dfrac{13}{7}.\dfrac{6}{13}\\ \Rightarrow x=\dfrac{6}{7}\)
b) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{1}{5}\\ \Rightarrow\dfrac{4}{7}.x=\dfrac{13}{15}\\ \Rightarrow x=\dfrac{91}{60}\)
c) \(\left(\dfrac{3}{10}-x\right):\dfrac{2}{5}=\dfrac{3}{5}\\ \Rightarrow\dfrac{3}{10}-x=\dfrac{6}{25}\\ \Rightarrow x=\dfrac{3}{50}\)
d) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\\ \Rightarrow\dfrac{2}{3}x=\dfrac{11}{3}\\ \Rightarrow x=\dfrac{11}{2}\)
\(a,\)\(x:\dfrac{6}{13}=\dfrac{13}{7}\)
\(x=\dfrac{13}{7}.\dfrac{6}{13}\)
\(x=\dfrac{6}{7}\)
b,\(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{1}{5}\)
\(\dfrac{4}{7}.x=\dfrac{1}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{3}{15}+\dfrac{10}{15}\)
\(\dfrac{4}{7}.x=\dfrac{13}{15}\)
\(x=\dfrac{13}{15}:\dfrac{4}{7}\)
\(x=\dfrac{13}{15}.\dfrac{7}{4}\)
\(x=\dfrac{91}{60}\)
a: Ta có: \(x:\dfrac{6}{13}=\dfrac{13}{7}\)
\(\Leftrightarrow x=\dfrac{13}{7}\cdot\dfrac{6}{13}\)
hay \(x=\dfrac{6}{7}\)
b: Ta có: \(\dfrac{4}{7}x-\dfrac{2}{3}=\dfrac{1}{5}\)
\(\Leftrightarrow x\cdot\dfrac{4}{7}=\dfrac{13}{15}\)
hay \(x=\dfrac{91}{60}\)
Tìm x biết: a) x + \(\dfrac{2}{3}=\dfrac{4}{27}\) b) \(\dfrac{3}{4}x-\dfrac{7}{3}=\dfrac{1}{4}x+\dfrac{1}{6}\)
c) \(\dfrac{13}{10}x-\dfrac{5}{2}=\dfrac{7}{2}\) d) (3\(x\) + 2) \(\left(\dfrac{-2}{5}x-7\right)=0\)
a: x=4/27-2/3=4/27-18/27=-14/27
b: =>3/4x-1/4x=1/6+7/3
=>1/2x=1/6+14/6=5/2
hay x=5
c: =>13/10x=7/2+5/2=6
=>x=13/10:6=13/60
d: (3x+2)(-2/5x-7)=0
=>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-35/2
a) x = 4/27 - 2/3
x = -14/27
a: x=4/27-2/3=4/27-18/27=-14/27
b: =>3/4x-1/4x=1/6+7/3
=>1/2x=1/6+14/6=5/2
hay x=5
c: =>13/10x=7/2+5/2=6
=>x=13/10:6=13/60
d: (3x+2)(-2/5x-7)=0
=>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-35/2
a.\(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b.\(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
c.\(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
d.\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
e.\(\dfrac{x+97}{125}+\dfrac{x-63}{35}=\dfrac{x-7}{21}+\dfrac{x-77}{49}\)
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)