Cho x,y,z là các số khác 0 ; đôi một khác nhau va x+y+z =0 Chứng minh A= \(\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=9\)
cho x,y,z,t là các số tự nhiên khác 0 ta có
M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t)
CMR M không là số tự nhiên khác 0
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=>M>1(1)
Lại có:
Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)
Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)
=>M<2(2)
Từ (1) và (2)
=>1<M<2
=>M không là số tự nhiên
=>ĐPCM
cho x,y,z,t là các số tự nhiên khác 0 ta có
M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t)
CMR M là số tự nhiên khác 0
Làm rõ ràng cho mình nhé xin đấy
nhan vao chu dung 0 se co cach giai
nhấn vào chữ Đúng 0 sẽ có lời giải hiện ra
cho x, y, z là các số khác 0, đôi 1 khác nhau và x+y+z=0
cm:A=[(x-y)/z + (y-z)/x + (z-x)/y] [z/(x-y)+x/(y-z)+y/(z-x)] = 9
nhanh giùm mk đag cần gấp
Cho x,y,z là các số khác 0 và x^2= y*z; y^2= x*z; z^2= x*y
CMR: x=y=z
cho x, y, z là các số hữu tỉ khác nhau và khác 0 sao cho x+1/y = y+1/z = z+1/x . CMR xyz=1 hoặc xyz=-1
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).
cho x,y,z là các số khác 0 và x^2=yz , y^2=xz , z^2=xy . cmr x=y=z
a. Cho x,y,z là 3 số khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức A=\(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\)
b. Cho a,b,c là các số hữu tỉ khác nhau từng đôi một. Chứng minh rằng A=\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\)
là bình phương của 1 số hữu tỉ
c. Tìm giá trị lớn nhất của biểu thức B=\(\dfrac{5x^2+4x-1}{x^2}\)
Cho x,y,z là các số tự nhiên khác 0. CMR : x/x+y+z + y/x+y+t + z/y+z+t + t/x+z+t có giá trị không phải là số tự nhiên
Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t
-Chứng minh biểu thức nhỏ hơn 2 .
Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z
A<x+t+y+z+z+x+t+y/x+y+t+z
A<2(x+t+y+z)/x+y+t+z
A<2
-Chứng minh biêu thức lớn hơn 1
A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z
A>x+y+t+z/z+x+y+t
A>1
Mà 1<A<2
Suy ra A không phải là STN
Có gì sai thì bạn sửa nhé
cho x,y,z là các số hữu tỉ khác 0 , sao cho 2x+2y-z/z=2x-y+2z/y=-x+2y+2z/x , tính M=(x+y).(y+z).(z+x)/8xyz