Những câu hỏi liên quan
LA
Xem chi tiết
NT
25 tháng 1 2021 lúc 19:18

a) Trường hợp 1: P=3

\(\Leftrightarrow P^2+44=3^2+44=53\) là số nguyên tố

Trường hợp 2: P>3 

\(\Leftrightarrow\)P=3k+1 hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+1\right)^2+44=9k^2+6k+1+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+2k+15\right)⋮3\)(loại)

Với P=3k+2(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+2\right)^2+44=9k^2+12k+4+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+4k+16\right)⋮3\)(loại)

Vậy: P=3

b) Với P=3 thì P+10=13 và P+14=17 đều là số nguyên tố

Với P>3 thì \(P=3k+1\) hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\)) thì P+14=3k+1+14=3(k+5) không là số nguyên tố

=> Loại

Với P=3k+2(\(k\in N\)) thì P+10=3k+2+10=3(k+4) không là số nguyên tố

=> Loại

Vậy: P=3

Bình luận (0)
LA
Xem chi tiết
NT
25 tháng 1 2021 lúc 14:15

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

Bình luận (1)
LM
Xem chi tiết
DV
12 tháng 12 2019 lúc 18:43

p = 3 đó.

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.

Suy ra p chia 3 dư 1 hoặc 2.

1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(3k^2+22k+15) chia hết cho 3,do đó ko là số nguyên tố

2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố

Vậy chỉ có p=3 thỏa thôi

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NH
15 tháng 4 2023 lúc 20:34

Nếu p = 2 ⇒ p+ 2 = 4 ( loại)

Nếu p = 3 ⇒ p + 2 = 2 + 3 = 5 ( thỏa mãn)

                   p + 10 = 3 + 10 = 13 ( thỏa mãn)

Nếu p > 3 ⇒ p = 3k + 1 hoặc p = 3k + 2

Nếu  p =  3k+ 1 ⇒ p +2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)

Nếu p = 3k + 2 ⇒ p + 10 = 3k + 2 + 10 = 3k + 12 ⋮ 3 (loại)

Vậy p = 3 là số nguyên tố duy nhất thỏa mãn yêu cầu đề bài

Bình luận (0)
PA
Xem chi tiết
D6
16 tháng 12 2016 lúc 21:49

là snt 3 đó bạn!!!

Bình luận (0)
TA
16 tháng 12 2016 lúc 21:49

, p+2, p+4 nguyên tố? 
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố 

*p # 3: 
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố 
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố 

Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3 

TK nhé

Bình luận (0)
SV
16 tháng 12 2016 lúc 21:51

p=3 vì bài nầy mình được cô giạy bồi dưỡng rồi

Bình luận (0)
NL
Xem chi tiết
LM
Xem chi tiết
HT
Xem chi tiết
BD
Xem chi tiết