Những câu hỏi liên quan
OL
Xem chi tiết
NT
2 tháng 4 2021 lúc 21:32

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

Bình luận (1)
H24
2 tháng 4 2021 lúc 22:34

Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh 

b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)

              \(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)

              \(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)

\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)

\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)

  Vậy ...

Bình luận (0)
H24
3 tháng 7 2021 lúc 20:10

\Delta'=1^2-m=1-mΔ′=12−m=1−m

phương trình có 2 nghiệm <=>\Delta&#x27;\ge0Δ′≥0

<=>1-m\ge01−m≥0

<=>m\le1m≤1

+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1​+x2​=−2(1)x1​x2​=m(2)​

Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1​+2x2​=1(3)

từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1​+x2​=−23x1​+2x2​=1​ <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1​=5x2​=−7​. Thay vào (2) : 5.(-7)= m <=> m= -35

Bình luận (0)
GC
Xem chi tiết
NL
16 tháng 3 2022 lúc 21:14

\(\Delta'=\left(m-5\right)^2+2m-9=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-5\right)\\x_1x_2=-2m+9\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2\left(m-5\right)x_1-2m+9=0\Rightarrow x_1^2=2\left(m-5\right)x_1+2m-9\)

Thay vào bài toán:

\(2\left(m-5\right)x_1+2m-9+2\left(m-5\right)x_2=4m^2\)

\(\Leftrightarrow2\left(m-5\right)\left(x_1+x_2\right)+2m-9=4m^2\)

\(\Leftrightarrow2\left(m-5\right).2\left(m-5\right)+2m-9=4m^2\)

\(\Leftrightarrow-38m+91=0\)

\(\Rightarrow m=\dfrac{91}{38}\)

Bình luận (0)
N9
Xem chi tiết
NT
16 tháng 2 2022 lúc 19:11

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

Bình luận (1)
MY
16 tháng 2 2022 lúc 20:00

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 12 2017 lúc 5:59

Xét phương trình x 2 – (2m – 3)x + m 2 – 3m = 0 có a = 1 0 và

∆ = ( 2 m – 3 ) 2   –   4 ( m 2 – 3 m ) = 9 > 0    

Phương trình luôn có hai nghiệm phân biệt x 1 ;   x 2

Áp dụng định lý Vi-ét ta có: x 1 + x 2 = 2 m – 3 ; x 1 . x 2 = m 2 – 3 m

Ta có 1 < x 1 < x 2 < 6

⇔ x 1 − 1 x 2 − 1 > 0 x 1 + x 2 > 1 x 1 − 6 x 2 − 6 > 0 x 1 + x 2 < 12 ⇔ x 1 x 2 − x 1 + x 2 + 1 > 0 x 1 + x 2 > 1 x 1 x 2 − 6 x 1 + x 2 + 36 > 0 x 1 + x 2 < 12 ⇔ m 2 − 3 m − 2 m + 3 + 1 > 0 2 m − 3 > 1 m 2 − 3 m − 6 2 m − 3 + 36 > 0 2 m − 3 < 12 ⇔ m 2 − 5 m + 4 > 0 2 m > 4 m 2 − 15 m + 54 > 0 2 m < 15 ⇔ m < 1 m > 4 m > 2 m < 6 m > 9 m < 15 2

⇔ 4 < m < 6

Đáp án: D

Bình luận (0)
NA
Xem chi tiết
NT
11 tháng 7 2023 lúc 22:28

a: Khi m=-5 thì pt sẽ là x^2-5x-6=0

=>x=6 hoặc x=-1

b:

Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29

Để pt có hai nghiệm thì -4m+29>=0

=>m<=29/4

x1-x2=3

=>(x1-x2)^2=9

=>(x1+x2)^2-4x1x2=9

=>5^2-4(m-1)=9

=>4(m-1)=25-9=16

=>m-1=4

=>m=5(nhận)

c: 2x1-3x2=5 và x1+x2=5

=>x1=4 và x2=1

x1*x2=m-1

=>m-1=4

=>m=5(nhận)

Bình luận (0)
NC
Xem chi tiết
DH
26 tháng 4 2021 lúc 2:53

Phương trình có 2 nghiệm ⇔ △' ≥ 0 ⇔ m2 + 2m + 1 - 2m - 3 ≥ 0 ⇔ m ≥ \(\sqrt{2}\) hoặc m ≤ \(-\sqrt{2}\)

Theo hệ thức Vi-et có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=2m+3\end{matrix}\right.\)

Ta có: |x1 - x2| = 2 => (|x1 - x2|)2 = (x1 - x2)2 = 4

                                                  ⇔ (x1 + x2)2 - 4x1.x2 = 4

                                                   ⇔ (2m+2)2 - 4(2m+3) = 4

                                                   ⇔ 4m2 + 8m + 4 - 8m - 12 - 4 = 0

                                                   ⇔ 4m2 - 12 = 0

                                                   ⇔ \(4\left(m-\sqrt{3}\right)\left(m+\sqrt{3}\right)\) = 0

                                                    ⇔ m = \(\pm\sqrt{3}\) (t/m)

Bình luận (0)
LP
Xem chi tiết
PT
Xem chi tiết
MB
Xem chi tiết
H24
27 tháng 4 2023 lúc 22:17

loading...  

Bình luận (0)
DL
27 tháng 4 2023 lúc 22:22

Để phương trình có 2 nghiệm thì:

\(\Delta\ge0\)

\(m^2+10m+25-8m-24\ge0\)

\(m^2+2m+1\ge0\)

\(\left(m+1\right)^2\ge\forall m\) => Pt đã cho có 2 nghiệm với mọi giá trị m.

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=2m+6\end{matrix}\right.\)

Có: 

\(x_1^2+x_2^2=35\) (đưa cái đề đàng hoàng vào.-.)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2=35\)

<=> \(\left(m+5\right)^2-2.\left(2m+6\right)=35\)

<=> \(m^2+10m+25-4m-12-35=0\)

<=> \(m^2+6m-22=0\)

delta' = 32 +22 = 31 > 0

=> \(\left\{{}\begin{matrix}m_1=-3+\sqrt{31}\\m_2=-3-\sqrt{31}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 7 2021 lúc 20:07

Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)

Bình luận (0)