Những câu hỏi liên quan
LL
Xem chi tiết
NT
23 tháng 12 2020 lúc 18:27

Bài làm 

\(A=\frac{2x+6}{\left(x-3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)

\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
23 tháng 12 2020 lúc 19:59

\(A=\frac{2x+6}{\left(x-3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)

\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NL
14 tháng 12 2020 lúc 23:55

Hàm số xác định trên R khi và chỉ khi:

a.

\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

b.

\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)

\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)

c.

\(x^2+6x+2m-3>0\) với mọi x

\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)

\(\Leftrightarrow m>6\)

e.

\(-x^2+6x+2m-3>0\) với mọi x

Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn

f.

\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)

\(\Leftrightarrow1< m< 3\)

Bình luận (0)
NB
Xem chi tiết
TA
27 tháng 6 2021 lúc 16:12

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

Bình luận (5)
NN
Xem chi tiết
RT
Xem chi tiết
NK
Xem chi tiết
MT
20 tháng 8 2015 lúc 13:45

 

(3x+2)(2x+9)-(x+2)(6x+1)=(x+1)-(x-6)

<=>(6x2+27x+4x+18)-(6x2+x+12x+2)=x+1-x+6

<=>6x2+31x+18-6x2-13x-2=7

<=>18x+16=7

<=>18x=-9

<=>x=-1/2

Bình luận (0)
TD
Xem chi tiết
TM
2 tháng 4 2020 lúc 16:52

Là ông thọ

Bình luận (0)
 Khách vãng lai đã xóa
VV
Xem chi tiết
YN
22 tháng 3 2022 lúc 19:55

`Answer:`

a. \(x^3+6x^2+12=19\)

\(\Leftrightarrow x^3+6x^2+12x-19=0\)

\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)

\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)

Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)

\(\Rightarrow x-1=0\Leftrightarrow x=1\)

b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)

\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)

\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)

\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)

\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)

\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)

\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)

c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left(2x+3-x+2\right)^2\)

\(=\left(x+5\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NT
19 tháng 12 2018 lúc 14:30

Thực hiện phép tính

a,  6x3y5z : 3xy3z=2x2y2

b,  \(\frac{3x+6}{x+2}+\frac{2x+4}{x+2}\)

\(=\frac{3\left(x+2\right)}{x+2}+\frac{2\left(x+2\right)}{x+2}\)

=3+2=5

Bình luận (0)