Những câu hỏi liên quan
NH
Xem chi tiết
SR
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
VH
19 tháng 6 2019 lúc 16:07

Ta luôn có:

\(xy+yz+zx\le x^2+y^2+z^2\)\(=3\); dấu "=" xảy ra ⇔\(x=y=z\)

\(x\le\frac{x^2+1}{2}\); dấu "=" xảy ra ⇔ \(x=1\)

\(y\le\frac{y^2+1}{2}\); dấu "=" xảy ra ⇔ \(y=1\)

\(z\le\frac{z^2+1}{2}\); dấu "=" xảy ra ⇔ \(z=1\)

Suy ra: \(x+y+z\le\frac{x^2+y^2+z^2+3}{2}=\frac{6}{2}=3\)

Do đó: \(P_{max}=xy+yz+zx+\frac{5}{x+y+z}\le3+\frac{5}{3}=\frac{14}{3}\)

Dấu "=" xảy ra ⇔ x=y=z=1

Bình luận (0)
H24
Xem chi tiết
TQ
8 tháng 4 2018 lúc 9:14

cũng bằng 3

Bình luận (0)
NN
12 tháng 3 2023 lúc 21:40

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

 

 

Bình luận (0)
HL
Xem chi tiết
NM
18 tháng 3 2020 lúc 21:28

cái này mik chịu, mik mới có lớp 7

Bình luận (0)
 Khách vãng lai đã xóa
TK
19 tháng 3 2020 lúc 11:23

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
TK
19 tháng 3 2020 lúc 11:31

2,     \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)

Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)

=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)

Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)

=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)

Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)

Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)

=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)

Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
KS
Xem chi tiết
 
10 tháng 3 2019 lúc 22:01

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni

Bình luận (0)
CB
13 tháng 3 2019 lúc 21:31

v cả tham khảo =.=

Bình luận (0)