Những câu hỏi liên quan
H24
Xem chi tiết
NL
7 tháng 9 2021 lúc 17:07

\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)

\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)

\(\Rightarrow y^2\le\dfrac{16}{3}\)

\(\Rightarrow y^2=\left\{1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)

- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;2\right)\)

Bình luận (1)
EC
7 tháng 9 2021 lúc 17:12

Ta có: 4x2-4xy+4y2=16 

      ⇔ (2x-y)2+3y2=16 (1)

Vì (2x-y)2≥0 ⇒ 3y2≤16

                    ⇔ \(y^2\le\dfrac{16}{3}\)

                    ⇔ y2={1;4} ⇔ y={1;2}     

- Với y=1 ⇔ (2x-1)2 = 13 (loại do x nguyên dương)

- Với y=2 ⇔ (2x-2)2 = 4 \(\Leftrightarrow\left[{}\begin{matrix}2x-2=2\\2x-2=-2\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(loại\right)\end{matrix}\right.\)          

Vậy (x;y)=(2;2)

Bình luận (0)
LD
Xem chi tiết
VB
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)

\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)

\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)

Vì x,y nguyên nên ta có các trường hợp sau:

TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)

Các TH còn lại bạn tự làm nhé

Bình luận (0)
TH
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)

\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)

\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)

-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)

 

Bình luận (0)
DT
Xem chi tiết
TP
Xem chi tiết
NA
Xem chi tiết
MN
Xem chi tiết
BM
Xem chi tiết
AK
13 tháng 1 2019 lúc 11:57

Pt đã cho đưa về dạng

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

Bình luận (0)
OK
13 tháng 1 2019 lúc 12:38

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

Bình luận (0)
CN
Xem chi tiết
ID
9 tháng 12 2017 lúc 10:31

mik lp6

nên k bít

xin lỗi ha

Bình luận (0)
DH
6 tháng 2 2018 lúc 17:04

\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương 

nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra

Bình luận (0)
H24
Xem chi tiết
TH
9 tháng 1 2021 lúc 16:32

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

Bình luận (0)
TH
9 tháng 1 2021 lúc 16:41

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

Bình luận (0)