Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NT
9 tháng 1 2022 lúc 20:17

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2=2^2=4\)

hay BH=4HC

Bình luận (0)
NT
Xem chi tiết
NH
5 tháng 4 2023 lúc 13:27

loading...

Xét \(\Delta\) HBA và \(\Delta\) ABC có \(\widehat{H}\)  =  \(\widehat{A}\) = 900\(\widehat{B}\) chung

⇒  \(\Delta\) HBA  \(\sim\)  \(\Delta\) ABC (g-g)

Tương tự ta có:   \(\Delta\) HAC  \(\sim\)  \(\Delta\) ABC (g-g-g)

    ⇒ \(\Delta\) HBA  \(\sim\)   \(\Delta\) HAC ( t/c hai tam giác đồng dạng)

   \(\dfrac{HB}{HA}\) = \(\dfrac{HA}{HC}\) = \(\dfrac{BA}{AC}\)( theo khái niệm của tam giác đồng dạng.)

Mặt khác: KI là đường trung bình của tam giác ABH nên:

        \(\dfrac{HI}{HA}\) = \(\dfrac{HK}{HB}\) ⇒  \(\dfrac{HK}{HI}\) =   \(\dfrac{HB}{HA}\)

⇒ \(\dfrac{HK}{HI}\) = \(\dfrac{HA}{HC}\) mà \(\widehat{AHK}\) = \(\widehat{CHI}\)  = 900

⇒ \(\Delta\)  AHK \(\sim\) \(\Delta\) CHI ( c-g-c)

b, Kéo dài CI cắt AK tại D ta có:

vì  \(\Delta\)  AHK \(\sim\) \(\Delta\) CHI \(\widehat{HAK}\) = \(\widehat{HCI}\)

Xét \(\Delta\) HAK và \(\Delta\) DCK có: \(\widehat{A}\) = \(\widehat{C}\) ( cmt)

                                           \(\widehat{K}\) chung

   ⇒ \(\Delta\) HAK \(\sim\) \(\Delta\) DCK ( g-g)

  ⇒ \(\widehat{H}\) = \(\widehat{D}\)= 900 ⇒ AK \(\perp\) CI tại D ( đpcm)

 

 

      

 

 

Bình luận (0)
KL
Xem chi tiết
QO
26 tháng 7 2020 lúc 20:57

A B C K N 5 12

Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.

Bài làm

a) Xét tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}\)

hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)

=> \(BC=\sqrt{169}=13\left(cm\right)\)

=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)

Xét tam giác ABC và tam giác MNC có:

\(\widehat{BAC}=\widehat{NMC}=90^0\)

\(\widehat{C}\)chung

=> Tam giác ABC ~ tam giác MNC ( g-g )

=> \(\frac{AB}{MN}=\frac{AC}{MC}\)

hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)

b) Xét tam giác ABC vuông tại A

Đường cao AH

=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)

=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)

=> \(\frac{1}{AH^2}=\frac{169}{3600}\)

=> \(AH^2=\frac{3600}{169}\)

=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )

Xét tam giác AHB vuông tại H có:

Theo Pytago có:

\(BH^2=AB^2-AH^2\)

hay \(BH^2=5^2-\frac{3600}{169}\)

=> \(BH^2=25-\frac{3600}{169}\)

=>\(BH^2=\frac{625}{169}\)

=> \(BH=\frac{25}{13}\)( cm )

Ta có: BH + HC = BC

hay \(\frac{25}{13}+HC=13\)

=> \(HC=13-\frac{25}{13}\)

=> \(HC=\frac{144}{13}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
B1
30 tháng 7 2017 lúc 21:07

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

Bình luận (0)
H24
Xem chi tiết
HN
Xem chi tiết
NT
12 tháng 7 2021 lúc 1:01

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Bình luận (0)
NT
12 tháng 7 2021 lúc 1:04

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

Bình luận (0)
NT
12 tháng 7 2021 lúc 1:05

c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)

Do đó: AD=7,5cm; CD=12,5cm

Bình luận (0)
MH
Xem chi tiết
PL
Xem chi tiết