Tìm GTLN của biều thức: \(P=\left(2x+5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)
tìm GTLN của P=\(\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)
Tìm GTLL của :
\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-|xy-90|\)
\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-3\left(2x-3y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2.\left(1-3\right)-\left|xy-90\right|\)
\(\Leftrightarrow P=-4\left(2x-5y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=-\left[4\left(2x-5y\right)^2-\left|xy-90\right|\right]\)
Ta có \(\hept{\begin{cases}\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow\hept{\begin{cases}4\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow P=-\left[4\left(2x-5y\right)^2+\left|xy-90\right|\right]\le0\forall xy\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5y\right)^2=0\\xy-90=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-5y=0\\xy=90\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)
\(\Leftrightarrow2xy=5y^2\)\(\Leftrightarrow2.90=5y^2\Leftrightarrow5y^2=180\Leftrightarrow y^2=36\)
\(\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=90:6=15\\x=90:\left(-6\right)=-15\end{cases}}\)
Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\) hoặc x=-15; y=-6
Có 1 vài chỗ ko ok cho lắm bạn thông cảm
Học tốt
Trả lời :
Bn tham khảo link này :
https://olm.vn/hoi-dap/detail/216085412740.html
( Vào thống kê hỏi đáp của mk sẽ thấy )
help!
Tìm \(P_{max}=\left(2x-5y\right)^2-\left(5y-6x\right)^2-\left|xy-90\right|\)
Khó ghê !!!
Mik xin lỗi !!! Mik ko làm được nhé !!!
1. Đáp án nào đúng:
a) \(\dfrac{3x}{5y}=\dfrac{3x\left(x-2\right)}{5y\left(x-2\right)}\)
b) \(\dfrac{3x}{5y}=\dfrac{2x\left(x-2\right)}{3y\left(x+2\right)}\)
c) \(\dfrac{3x}{5y}=\dfrac{9x}{15y}\)
d) \(\dfrac{3x}{5y}=\dfrac{3x.x}{5y.x}\)
2. Tìm đa thức M trong đẳng thức \(\dfrac{8\left(x-y\right)}{4\left(x^2-y^2\right)}\)= \(\dfrac{ }{x+y}\)
3. Rút gọn phân thức \(\dfrac{6x^2y^3}{8x^3y^3}=\)
4. Rút gọn phân thức \(\dfrac{20xy\left(x+y\right)}{5xy\left(x-y\right)}=\)
5. Rút gọn phân thức \(\dfrac{6x-12}{\left(x+3\right)\left(x-3\right)}=\)
6. Rút gọn phân thức \(\dfrac{4\left(x-1\right)-2\left(1-x\right)}{6\left(x-1\right)}=\)
giúp mình nhé mng mình đang gấp ạ
1A,B,D
2 M=2
3 \(=\dfrac{3}{4x}\)
4 \(=\dfrac{4\left(x+y\right)}{x-y}=\dfrac{4x+4y}{x-y}\)
5 K rút gọn đc
6 \(=\dfrac{4\left(x-1\right)+2\left(x-1\right)}{6\left(x-1\right)}=\dfrac{6\left(x-1\right)}{6\left(x-1\right)}=1\)
Tìm GTLN của biểu thức :
\(100-\left|xy+yz+zt-200\right|-\left|3x-2y\right|-\left|5y-4z\right|-\left|8z-3t\right|\)
Tính : \(\frac{x\left(y^2-z\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}:\frac{\left(xy^2-xz\right)\left(2y-x\right)}{2\left(x^3+y^3+z^3-3xz\right)}\)
\(\frac{2x^2-4x+2y^2}{5x-5y}.\frac{16x^2-15y^2}{4x^3+4y^3}\)
Tìm GTLN của M=(2x-5y)2-(15y-6x)2-|xy-90|
Tham khảo
P= (4x2 +25y2 – 20xy) – (225y2 +36x2 – 180xy) – /xy-90/
= 4x2 +25y2 – 20xy – 225y2 – 36x2 + 180xy – /xy-90/
= -32x2 + 160xy – 200y2 -/xy-90/
= -8(4x2 – 20xy + 25y2) -/xy-90/
= -8 (2x−5y)2 -/xy-90/
Ta thấy:
(4x2 – 20xy + 25y2) /xy-90/≥ 0 và /xy-90//≥ 0
8 (2x−5y)2 ≤ 0 và -/xy-90//≤ 0
Do đó:
-8 (2x−5y)2 -/xy-90//≤ 0
Hay: P/≤ 0
Vậy: GTLN của P là 0 đạt được khi \(\left\{{}\begin{matrix}2x-5y=0\\xy-90=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=15;x=6\\x=-15;x=-6\end{matrix}\right.\)
Tham khảo
P=(4x2x2 +25y2y2 - 20xy) - (225y2y2 +36x2x2 - 180xy) - /xy-90/
=4x2x2 +25y2y2 - 20xy - 225y2y2 - 36x2x2 + 180xy - /xy-90/
=-32x2x2 + 160xy - 200y2y2 -/xy-90/
=-8(4x2x2 - 20xy + 25y2y2) -/xy-90/
= -8 (2x−5y)2(2x−5y)2 -/xy-90/
Ta thấy:(4x2x2 - 20xy + 25y2y2) /xy-90/≥≥ 0 và /xy-90//≥≥ 0
8 (2x−5y)2(2x−5y)2≤≤ 0 và -/xy-90//≤≤ 0
Do đó:- -8 (2x−5y)2
Hay: P/ 0
Vậy: GTLN của P là 0 đạt được khi ⇒
\(\left\{{}\begin{matrix}2x-5y=3\\6x-15y=10\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x+7y=11\\10x+14y=22\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-5y=3\\6x-15y=10\end{matrix}\right.\)
Vì \(\dfrac{2}{6}=\dfrac{-5}{-15}\ne\dfrac{3}{10}\)
nên hệ phương trình vô nghiệm
\(\left\{{}\begin{matrix}5x+7y=11\\10x+14y=22\end{matrix}\right.\)
Vì \(\dfrac{5}{10}=\dfrac{7}{14}=\dfrac{11}{22}=\dfrac{1}{2}\)
nên hệ phương trình có vô số nghiệm
Cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm GTLN của biểu thức: \(M=xy+3y-4x^2-3\)