thực hiện phép tính : x^2+2/x^3-1 + 2/x^2+x+1 +1/1-x
Thực hiện phép tính: 1 ( x - 1 ) ( x - 2 ) + 2 ( x - 2 ) ( x - 3 ) - 3 ( x - 3 ) ( x - 1 )
Thực hiện phép tính x + 1 x + 2 : x + 2 x + 3 : x + 3 x + 1
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
thực hiện phép tính:1/x.(x+1)+1/(x+1).(x+2)+1/(x+2).(x+3)+.....+1/(x+2019).(x+2020)
thực hiện phép tính
( x+2 )(1+x-x^2+x^3-x^4 ) - (1-x)(1+x+x^2+x^3+x^4 )
Thực hiện phép tính
[ x^2-2x+1/3x+(x+1)^2 - 1-2x^2+4x/x^3-1 + 1/x-1] : 2x/x^3+x
éc o éccccccccccccccccc
Bạn cần viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo). Viết như thế này nhìn khó đọc quá.
thực hiện phép tính
(x+1)^2 + (x-2) (x+3) - 4x
(x-2)^2 + (x+1)^2 + 2 (x-2) (-1 - x)
Trả lời:
a, ( x + 1 )2 + ( x - 2 ) ( x + 3 ) - 4x
= x2 + 2x + 1 + x2 + 3x - 2x - 6 - 4x
= 2x2 - x - 5
b, ( x - 2 )2 + ( x + 1 )2 + 2 ( x - 2 ) ( - 1 - x )
= x2 - 4x - 4 + x2 + 2x + 1 + ( 2x - 4 ) ( - 1 - x )
= 2x2 - 2x - 3 - 2x - 2x2 + 4x + 4x
= 4x - 3
a) \(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x\)
\(=\left(x^2+2x+1\right)+\left(x^2+x-6\right)-4x\)
\(=x^2+2x+1+x^2+x-6-4x\)
\(=2x^2-x-5\)
b) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)
\(=\left(x^2-4x+4\right)+\left(x^2+2x+1\right)+\left(2x-4\right)\left(-1-x\right)\)
\(=x^2-4x+4+x^2+2x+1+\left(-2x-2x^2+4+4x\right)\)
\(=x^2-4x+4+x^2+2x+1-2x-2x^2+4+4x\)
\(=9\)
Thực hiện phép tính
a) \(\dfrac{2x}{x^2-6x+9}\)+\(\dfrac{x-2}{x-3}\)
b)\(\dfrac{x^2+2}{x^3-1}\)+\(\dfrac{2}{x^2+x+1}\)-\(\dfrac{1}{x-1}\)
a) \(\dfrac{2x}{x^2-6x+9}+\dfrac{x-2}{x-3}\) (ĐK: \(x\ne3\))
\(=\dfrac{2x}{\left(x-3\right)^2}+\dfrac{x-2}{x-3}\)
\(=\dfrac{2x}{\left(x-3\right)^2}+\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(=\dfrac{2x+x^2-2x-3x+6}{\left(x-3\right)^2}\)
\(=\dfrac{x^2-3x+6}{x^2-6x+9}\)
b) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x^2+x+1}\)