Cho A/B =1/2 .Chứng tỏ rằng: \(\frac{2015A+1}{2015B+2}=\frac{A}{B}\)
Cho các số dương a,b,c thỏa mãn a+b+c=2015. Chứng minh rằng :
\(\frac{a}{a+\sqrt{2015a+bc}}+\frac{b}{b+\sqrt{2015b+ac}}+\frac{c}{c+\sqrt{2015c+ab}}\le1\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\). Chứng minh \(\frac{ac}{bd}\)= \(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) =>\(a=bk\); \(c=dk\)
Thay \(a=bk\);\(c=dk\)vào biểu thức \(\frac{ac}{bd}\)ta được:
\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{k^2bd}{bd}=k^2\left(1\right)\)
Thay \(a=bk\); \(c=dk\)vào biểu thức \(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015\left(bk\right)^2+2016\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015b^2k^2+2016d^2k^2}{2015b^2+2016d^2}=\frac{k^2\left(2015b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\)
Từ (1)(2)
=>\(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR: a) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
b) \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)
1. cho a,b,c > 0 và a+b+c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
2. ch a,b,c là các số thực dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=2015\). Tính GTNN của \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Cho các số nguyên a, b, c thỏa mãn :\(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)
Tính giá trị biểu thức :\(P=\frac{2015a^2+b^2}{c^2}+\frac{2015b^2+c^2}{a^2}+\frac{2015c^2+a^2}{b^2}\)
Ủa tui tưởng bài này ỏ lớp 7 cơ ch71, lớp 6 có rùi sao
từ đề bài => \(2014+\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}+2014=\frac{a^2+b^2}{c^2}+2014\)
=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\). theo tính chất dãy tỉ số bằng nhau
=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{b^2+c^2+a^2+c^2+a^2+b^2}{a^2+b^2+c^2}=\frac{2.\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\)
=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)=>\(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\)
=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{c^2}{b^2}=6:2=3\)\(P=2015.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)=2016.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)=2016.3=6048\)
cho \(\frac{a}{b}\)=\(\frac{c}{d}\). CMR:
a)(\(\frac{a+b}{c+d}\))3=\(\frac{a^3-b^3}{c^3-d^3}\)
b) \(\frac{ac}{bd}\)=\(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
a) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)
\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
b) Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)
\(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015.\left(bk\right)^2+2016.\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015.b^2.k^2+2016.d^2.k^2}{2015.b^2+2016.d^2}=\frac{k^2.\left(2015.b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\) Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)
Cho 2 số tự nhiên a và b sao cho (a + 2016b) ⋮ 2017. Chứng minh rằng:
A = (2a + 2015b)(3a + 2014b)...(2015a + 2b) ⋮ 20172014.
Cho dãy tỉ số bằng nhau:
\(\frac{2015a+b+c+d}{a}=\frac{a+2015b+c+d}{b}=\frac{a+b+2015c+d}{c}=\frac{a+b+c+2015d}{d}\)
Tính \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Xét \(a+b+c+d=0\) thì ta có dãy tỷ số là đúng.
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
\(\Rightarrow M=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\)thì ta có:
\(\frac{2015a+b+c+d}{a}=\frac{a+2015b+c+d}{b}=\frac{a+b+2015c+d}{c}=\frac{a+b+c+2015d}{d}=\frac{2018\left(a+b+c+d\right)}{a+b+c+d}=2018\)
Lấy 2 cái đầu cộng với nhau ta được:
\(\frac{2016\left(a+b\right)+2\left(c+d\right)}{a+b}=2018\)
\(\Leftrightarrow\frac{c+d}{a+b}=\frac{2018-2016}{2}=1\)
Tương tự ta cũng có:
\(\frac{a+b}{c+d}=;\frac{b+c}{d+a}=1;\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
Cho các số nguyên a,b,c thỏa mãn
\(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)
Tính giá trị biểu thức: \(\frac{2015a^2+b^2}{c^2}=\frac{2015b^2+c^2}{a^2}=\frac{2015c^2+a^2}{b^2}\)
Các bn giúp mk nha.Mk đg cần gấp