Lời giải:
$\frac{A}{B}=\frac{1}{2}\Rightarrow B=2A$
Khi đó:
$\frac{2015A+1}{2015B+2}=\frac{2015A+1}{2015.2A+2}$
$=\frac{2015A+1}{2(2015A+1)}=\frac{1}{2}=\frac{A}{B}$
Vậy ta có đpcm.
Lời giải:
$\frac{A}{B}=\frac{1}{2}\Rightarrow B=2A$
Khi đó:
$\frac{2015A+1}{2015B+2}=\frac{2015A+1}{2015.2A+2}$
$=\frac{2015A+1}{2(2015A+1)}=\frac{1}{2}=\frac{A}{B}$
Vậy ta có đpcm.
Cho các số nguyên a, b, c thỏa mãn :\(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)
Tính giá trị biểu thức :\(P=\frac{2015a^2+b^2}{c^2}+\frac{2015b^2+c^2}{a^2}+\frac{2015c^2+a^2}{b^2}\)
Cho 2 số tự nhiên a và b sao cho (a + 2016b) ⋮ 2017. Chứng minh rằng:
A = (2a + 2015b)(3a + 2014b)...(2015a + 2b) ⋮ 20172014.
Cho các số nguyên a,b,c thỏa mãn
\(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)
Tính giá trị biểu thức: \(\frac{2015a^2+b^2}{c^2}=\frac{2015b^2+c^2}{a^2}=\frac{2015c^2+a^2}{b^2}\)
Các bn giúp mk nha.Mk đg cần gấp
Bài 1 :Tổng \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\)\(\frac{1}{10}\)bằng phân số \(\frac{a}{b}\).Chứng tỏ rằng a chia hết cho 13
Bài 2 : Cho phân số tối giản \(\frac{a}{b}\)và\(\frac{a'}{b'}\)\(\left(a,b,a',b'\in Nsao\right)\)có tổng là một số tự nhiên n .Chứng tỏ rằng \(b=b'\)
Cho số nguyên dương a, b, c, d
Chứng tỏ rằng: \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
a. Chứng tỏ A > 2.
b. Chứng tỏ a không phải là số tự nhiên.
a)Cho A=\(\frac{10}{27}\)+\(\frac{9}{16}\)+\(\frac{11}{34}\).Chứng tỏ rằng A<2
b)Cho B=\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\)+...+\(\frac{1}{22}\).Chứng tỏ rằng B>\(\frac{1}{2}\)
a, Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
b,Chứng mình rằng :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}<1\)
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)