Những câu hỏi liên quan
H24
Xem chi tiết
NT
3 tháng 4 2023 lúc 20:39

a: Xet ΔABC vuông tại A co AH là đường cao

nên AH^2=HB*HC

b: BC=3,6+6,4=10cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)

=>AC=8cm

Bình luận (0)
AD
Xem chi tiết
NT
18 tháng 6 2023 lúc 11:41

BC=3,6+6,4=10cm

AH=căn 3,6*6,4=4,8cm

AB=căn 3,6*10=6cm

AC=căn 6,4*10=8cm

Bình luận (0)
3P
Xem chi tiết
GH
22 tháng 6 2023 lúc 6:58

a) \(BC=BH+HC=3,6+6,4=10\left(cm\right)\)

Tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BC.BH\\ \Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\left(cm\right)\)

Tương tự:

\(AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\left(cm\right)\)

Ta có: \(AH^2=BH.CH\)

\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)

b) Tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông) nên EF = AH = 4,8 (cm)

c) Tam giác AHB vuông tại H có EH là đường cao (gt) \(\Rightarrow AH^2=AB.AE\)

Tương tự tam giác AHC ta có \(AH^2=AC.AF\Rightarrow AB.AE=AC.AF\)

Xét tam giác AEF và tam giác ABC có:

\(\widehat{FAE}.chung\)

\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\left(vì.AB.AE=AC.AF\right)\)

Do đó tam giác AEF đồng dạng tam giác ABC.

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 8 2021 lúc 21:57

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bình luận (0)
NT
18 tháng 8 2021 lúc 21:59

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

Bình luận (0)
NN
Xem chi tiết
VN
Xem chi tiết
H24
27 tháng 10 2015 lúc 21:34

a) Tính độ dài các đoạn thẳng: AcB, AC, AH.

Có: AH2 = HB . HC

=> AH = \(\sqrt{3,6.6,4}=4,8\) (cm)

BC = HB + HC = 3,6 + 6,4 = 10 (cm)

=> AB2 = HB . BC 

=> AB = \(\sqrt{3,6.10}=6\) (cm)

=> AC = \(\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\) (cm)

b/ Chứng minh rằng: AB.AE = AC.AF.

Gọi I là giao điểm giữa AH và EF

Có: AFE + AEF = 900 (1)

ABH + BAH = 900 (2)

mà AEHF là hình chữ nhật (vì A = E = F = 900)

=> tam giác AIE cân 

=> BAH = AEF 

=> (1) => AFE + BAH = 900 (3)

Từ (2) và (3) => ABH = AFE 

Xét tam giác ABC và tam giác AFE có:

góc A chung

ABC = AFE (chứng minh trên)

=> \(\Delta ABC\Omega\Delta AFE\) (gg)

=> \(\frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)(đpcm)

Bình luận (0)
TN
Xem chi tiết
JC
Xem chi tiết
NT
21 tháng 10 2021 lúc 21:30

\(CH=\dfrac{AH^2}{HB}=\dfrac{3.6^2}{2.7}=4.8\left(cm\right)\)

\(BC=4.8+2.7=7.5\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=\sqrt{2.7\cdot7.5}=4.5\left(cm\right)\)

AC=6(cm)

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 6 2018 lúc 17:50

Bình luận (0)