Những câu hỏi liên quan
H24
Xem chi tiết
H24
4 tháng 8 2023 lúc 14:25

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

Bình luận (1)
NT
4 tháng 8 2023 lúc 14:15

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

Bình luận (0)
H24
Xem chi tiết
TG
18 tháng 7 2021 lúc 16:36

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

Bình luận (0)
NT
18 tháng 7 2021 lúc 22:59

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

Bình luận (0)
NT
18 tháng 7 2021 lúc 23:01

d) Ta có: \(a^6-a^4+2a^3+2a^2\)

\(=a^2\left(a^4-a^2+2a+2\right)\)

\(=a^2\left[a^2\left(a^2-1\right)+\left(2a+2\right)\right]\)

\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]\)

\(=a^2\cdot\left(a+1\right)\left(a^3-a+2\right)\)

c) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 8 2021 lúc 0:11

a: Ta có: \(x^2-4y^2-2x-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c: Ta có: \(x^3+2x^2y-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

Bình luận (0)
NT
24 tháng 8 2021 lúc 0:16

e: Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

f: Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

Bình luận (0)
MC
Xem chi tiết
KL
17 tháng 12 2023 lúc 16:53

a) x³y + x - y - 1

= (x³y - y) + (x - 1)

= y(x³ - 1) + (x - 1)

= y(x - 1)(x² + x + 1) + (x - 1)

= (x - 1)[y(x² + x + 1) + 1]

= (x - 1)(x²y + xy + y + 1)

b) x²(x - 2) + 4(2 - x)

= x²(x - 2) - 4(x - 2)

= (x - 2)(x² - 4)

= (x - 2)(x - 2)(x + 2)

= (x - 2)²(x + 2)

c) x³ - x² - 20x

= x(x² - x - 20)

= x(x² + 4x - 5x - 20)

= x[(x² + 4x) - (5x + 20)]

= x[x(x + 4) - 5(x + 4)]

= x(x + 4)(x - 5)

d) (x² + 1)² - (x + 1)²

= (x² + 1 - x - 1)(x² + 1 + x + 1)

= (x² - x)(x² + x + 2)

= x(x - 1)(x² + x + 2)

Bình luận (0)
KL
17 tháng 12 2023 lúc 17:09

e) 6x² - 7x + 2

= 6x² - 3x - 4x + 2

= (6x² - 3x) - (4x - 2)

= 3x(2x - 1) - 2(2x - 1)

= (2x - 1)(3x - 2)

f) x⁴ + 8x² + 12

= x⁴ + 2x² + 6x² + 12

= (x⁴ + 2x²) + (6x² + 12)

= x²(x² + 2) + 6(x² + 2)

= (x² + 2)(x² + 6)

g) (x³ + x + 1)(x³ + x) - 2

Đặt u = x³ + x

x³ + x + 1 = u + 1

(u + 1).u - 2

= u² + u - 2

= u² - u + 2u - 2

= (u² - u) + (2u - 2)

= u(u - 1) + 2(u - 1)

= (u - 1)(u + 2)

= (x³ + x - 1)(x³ + x + 2)

= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)

= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]

= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]

= (x³ + x - 1)(x - 1)(x² - x + 2)

h) (x + 1)(x + 2)(x + 3)(x + 4) - 1

= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1

= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)

Đặt u = x² + 5x + 4

u + 2 = x² + 5x + 6

(1) u.(u + 2) - 1

= u² + 2u - 1

= u² + 2u + 1 - 2

= (u² + 2u + 1) - 2

= (u + 1)² - 2

= (u + 1 + √2)(u + 1 - √2)

= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)

= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)

Bình luận (0)
NT
17 tháng 12 2023 lúc 21:05

i: \(-\left(x^2+2\right)^2+4x\left(x^2+2\right)-3x^2\)

\(=-\left[\left(x^2+2\right)^2-4x\left(x^2+2\right)+3x^2\right]\)

\(=-\left[\left(x^2+2\right)^2-x\left(x^2+2\right)-3x\left(x^2+2\right)+3x^2\right]\)

\(=-\left[\left(x^2+2\right)\left(x^2+2-x\right)-3x\left(x^2+2-x\right)\right]\)

\(=-\left(x^2+2-x\right)\left(x^2-3x+2\right)\)

\(=-\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x-1\right)\)

\(=-\left(x+2\right)\left(x-2\right)\left(x-1\right)^2\)

l: \(81x^4+4y^4\)

\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)

\(=\left(81x^4+36x^2y^2+4y^4\right)-\left(6xy\right)^2\)

\(=\left[\left(9x^2\right)^2+2\cdot9x^2\cdot2y^2+\left(2y^2\right)^2\right]-\left(6xy\right)^2\)

\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)

\(=\left(9x^2+2y^2+6xy\right)\left(9x^2+2y^2-6xy\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 1 2017 lúc 7:46

a) (x - 2)(x - 3).                        b) 3(x - 2)(x + 5).

c) (x - 2)(3x + 1).                     d) (x-2y)(x - 5y).

e) (x + l)(x + 2)(x - 3).             g) (x-1)(x + 3)( x 2  + 3).

h) (x + y - 3)(x - y + 1).

Bình luận (0)
PL
Xem chi tiết
NT
26 tháng 12 2021 lúc 23:42

h: \(=\left(x+3\right)\cdot\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
14 tháng 8 2021 lúc 10:34

a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x-6y-1\right)\)

b) \(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c) \(=2\left(x-y\right)^2-18\)

\(=2\left[\left(x-y\right)^2-3^2\right]\)

\(=2\left(x-y+3\right)\left(x-y-3\right)\)

Bình luận (0)
NT
14 tháng 8 2021 lúc 13:44

a: \(x^2-36y^2-x+6y\)

\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x+6y-1\right)\)

b: \(x^3-8x^2+16x\)

\(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c: \(2x^2-4xy+2y^2-18\)

\(=2\left(x^2-2xy+y^2-9\right)\)

\(=2\left(x-y-3\right)\left(x-y+3\right)\)

d: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

Bình luận (0)
NT
14 tháng 8 2021 lúc 13:46

e: Ta có: \(x^4-x^2-30\)

\(=x^4-6x^2+5x^2-30\)

\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)

\(=\left(x^2-6\right)\left(x^2+5\right)\)

f: Ta có: \(x^2-xy-2y^2\)

\(=x^2-2xy+xy-2y^2\)

\(=x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+y\right)\)

g: Ta có: \(x^4-13x^2y^2+4y^4\)

\(=x^4-4x^2y^2+4y^4-9x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2+3xy-2y^2\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 7 2021 lúc 16:33

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

Bình luận (0)
NT
31 tháng 7 2021 lúc 23:10

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

Bình luận (0)
NT
31 tháng 7 2021 lúc 23:12

e) Ta có: \(\left(x^2+3x\right)^2-2\left(x^2+3x\right)-8\)

\(=\left(x^2+3x\right)^2-4\left(x^2+3x\right)+2\left(x^2+3x\right)-8\)

\(=\left(x^2+3x\right)\left(x^2+3x-4\right)+2\left(x^2+3x-4\right)\)

\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)

\(=\left(x+4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

f) Ta có: \(\left(x^2+4x+10\right)^2-7\left(x^2+4x+11\right)+7\)

\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)-7+7\)

\(=\left(x^2+4x+10\right)\left(x^2+4x+10-7\right)\)

\(=\left(x^2+4x+3\right)\left(x^2+4x+10\right)\)

\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+10\right)\)

Bình luận (0)
CI
Xem chi tiết
NM
22 tháng 10 2021 lúc 21:17

\(a,=x\left(x-8\right)\\ b,=x\left(x-y\right)-6\left(x-y\right)=\left(x-6\right)\left(x-y\right)\\ c,=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\\ d,=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2+2\right)\)

Bình luận (0)
NT
22 tháng 10 2021 lúc 21:19

a: \(x^2-8x=x\left(x-8\right)\)

c: \(x^2-6x+9-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

Bình luận (0)