3tan(3x+pi/6)
a)\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
b)\(\dfrac{2sin2x-cos2x-7sinx+4+\sqrt{3}}{2cosx+\sqrt{3}}=1\)
c)\(\dfrac{\left(1+sinx+cos2x\right)sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
d)\(\left(\sqrt{3}sin2x+1\right)\left(2sinx-1\right)+sin3x-cos2x-sinx=0\)
a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)
\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)
\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)
\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)
\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)
\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
Đối chiếu điều kiện ta được:
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
3tan×(4x-pi chia 3) +√3=0
\(3tan\cdot\left(4x-\dfrac{\pi}{3}\right)+\sqrt{3}=0\)
\(\Rightarrow tan\left(4x-\dfrac{\pi}{3}\right)=-\dfrac{1}{\sqrt{3}}=tan\left(-\dfrac{\pi}{6}\right)\)
\(\Rightarrow4x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k\pi\)\(\Rightarrow4x=\dfrac{\pi}{6}+k\pi\)
\(\Rightarrow x=\dfrac{\pi}{24}+k\dfrac{\pi}{4}\left(k\in Z\right)\)
giải pt
a) \(\sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
b) \(3tan^3x-tanx+\frac{3\left(1+sinx\right)}{cos^2x}-8cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=0\)
\(3tan^2\left(x-\dfrac{\pi}{2}\right)=2\left(\dfrac{1-sinx}{sinx}\right)\)
ĐK: \(x\ne k\pi\)
\(3tan^2\left(x-\dfrac{\pi}{2}\right)=2.\dfrac{1-sinx}{sinx}\)
\(\Leftrightarrow3cot^2x=\dfrac{2}{sinx}-2\)
\(\Leftrightarrow\dfrac{3}{sin^2x}-3=\dfrac{2}{sinx}-2\)
\(\Leftrightarrow\dfrac{3}{sin^2x}-\dfrac{2}{sinx}-1=0\)
\(\Leftrightarrow\left(\dfrac{1}{sinx}-1\right)\left(\dfrac{3}{sinx}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{sinx}-1=0\\\dfrac{3}{sinx}+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-3\left(l\right)\end{matrix}\right.\)
\(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+\text{k}2\pi\left(tm\right)\)
Vậy phương trihf đã cho có nghiệm \(x=\dfrac{\pi}{2}+\text{k}2\pi\)
ĐKXĐ: \(x\ne k\pi\)
\(3cot^2x=2\left(\dfrac{1-sinx}{sinx}\right)\)
\(\Leftrightarrow\dfrac{3cos^2x}{sin^2x}=2\left(\dfrac{1-sinx}{sinx}\right)\)
\(\Leftrightarrow\dfrac{3\left(1-sinx\right)\left(1+sinx\right)}{sin^2x}-2\left(\dfrac{1-sinx}{sinx}\right)=0\)
\(\Leftrightarrow\left(\dfrac{1-sinx}{sinx}\right)\left(\dfrac{3+3sinx}{sinx}-2\right)=0\)
\(\Leftrightarrow\left(\dfrac{1-sinx}{sinx}\right)\left(\dfrac{3+sinx}{sinx}\right)=0\)
\(\Leftrightarrow sinx=1\)
\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
Giải phương trình:
\(Tan\left(\dfrac{\pi}{2}+x\right)-3Tan^2x=\dfrac{Cos2x-1}{Cos^2x}\)
Lời giải:
$\tan (\frac{\pi}{2}+x)-3\tan ^2x=\frac{\cos 2x-1}{\cos ^2x}=\frac{2\cos ^2x-2}{\cos ^2x}=\frac{2(\cos ^2x-1)}{\cos ^2x}$
$=\frac{-2\sin ^2x}{\cos ^2x}=-2\tan ^2x$
$\Leftrightarrow \tan (x+\frac{\pi}{2})=\tan ^2x$
Dễ thấy $\tan x=0$ không thỏa mãn nên $\tan x\neq 0$. Do đó pt $\Leftrightarrow \tan ^2x=\tan [\pi +(x-\frac{\pi}{2})]=\tan (x-\frac{\pi}{2})=-\tan (\frac{\pi}{2}-x)=-\cot x =\frac{-1}{\tan x}$
$\Rightarrow \tan ^3x=-1$
$\Rightarrow \tan x=-1$
$\Rightarrow x=\frac{-\pi}{4}+k\pi$ với $k$ nguyên.
giải các pt
a) \(tan2x+tan40^o=0\)
b) \(tan\left(2x-15^0\right)-1=0\)
c) \(3tan\left(60^o-x\right)+\sqrt{3}=0\)
d) \(tan\left(3x+\frac{2\pi}{5}\right)+tan\frac{\pi}{5}=0\)
a/
\(\Leftrightarrow tan2x=-tan40^0\)
\(\Leftrightarrow tan2x=tan\left(-40^0\right)\)
\(\Rightarrow2x=-40^0+k180^0\)
\(\Rightarrow x=-20^0+k90^0\)
b/
\(\Leftrightarrow tan\left(2x-15^0\right)=1\)
\(\Rightarrow2x-15^0=45^0+k180^0\)
\(\Rightarrow x=30^0+k90^0\)
c/
\(\Leftrightarrow tan\left(60^0-x\right)=-\frac{1}{\sqrt{3}}\)
\(\Rightarrow60^0-x=-30^0+k180^0\)
\(\Rightarrow x=90^0+k180^0\)
d/
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=-tan\left(\frac{\pi}{5}\right)\)
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=tan\left(-\frac{\pi}{5}\right)\)
\(\Rightarrow3x+\frac{2\pi}{5}=-\frac{\pi}{5}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{5}+\frac{k\pi}{3}\)
Tìm txđ của hàm số sau
a, \(y=3tan\left(2x+3\right)\)
b, \(y=cot\left(\dfrac{x}{3}+\dfrac{\pi}{4}\right)\)
a, y xác định `<=> 3cos(2x+3) \ne 0`
`<=>cos(2x+3) \ne 0`
`<=>2x+3 \ne π/2+kπ`
`<=>x \ne π/4 -3/2 +k π/2 (k \in ZZ)`
b, y xác định `<=> sin(x/3+π/4) \ne0`
`<=> x/3+π/4 \ne kπ`
`<=> x \ne (-3π)/4+ k3π`
ĐKXĐ:
a.
\(cos\left(2x+3\right)\ne0\)
\(\Leftrightarrow2x+3\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=-\dfrac{3}{2}+\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
b.
\(sin\left(\dfrac{x}{3}+\dfrac{\pi}{4}\right)\ne0\)
\(\Leftrightarrow\dfrac{x}{3}+\dfrac{\pi}{4}\ne k\pi\)
\(\Leftrightarrow x\ne-\dfrac{3\pi}{4}+k3\pi\)
2tan(3x)−3tan(2x)−tan2(2x)tan(3x)=0
Chứng minh rằng hàm số sau tuần hoàn với chu kí \(\pi\)
\(3tan^2x+1\)
em ko biết chị ơi
Bn ko biết thì bn đừng nói, nói thế thừa lắm, ko ai hỏi bn đâu mà bn phải nói