Chứng minh :
m3 + n3 + p3 -3mnp = (m+n+p)(m2 + n2 + p2 - mn - np - mp)
m3+n3+p3-3nmp=(m+n+p)(m2+n2+p2-mn-np-mp)
chứng minh đẳng thức sau
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
Bài 2: Tính giá trị của các biểu thức sau
a) A = 2 (m3 + n3) − 3 (m2 + n2), với m + n = 1;
b) B = 2m6 + 3m3n3 + n6 + n3, với m3 + n3 = 1;
c) C = (a − 1)3 − 4a (a + 1) (a − 1) + 3 (a − 1) (a2 + a + 1) với a = −3;
d) D = (y − 1) (y − 2) (1 + y + y2) (4 + 2y + y2) với y = 1
a: \(A=2\left(m^3+n^3\right)-3\left(m^2+n^2\right)\)
\(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)
\(=2-6mn-3+6mn\)
=-1
c: \(C=\left(a-1\right)^3-4a\left(a+1\right)\left(a-1\right)+3\left(a-1\right)\left(a^2+a+1\right)\)
\(=a^3-3a^2+3a-1-4a\left(a^2-1\right)+3a^3-3\)
\(=4a^3-3a^2+3a-4-4a^3+4a\)
\(=-3a^2+7a-4\)
\(=-3\cdot9-21-4\)
=-27-21-4
=-52
Cho tam giác MNP cân tại M có MN =MP 8cm , NP=10cm.
Kẻ MI vuông góc với NP (I thuộc NP)
a chứng minh rằng: IB =IC
b. Kẻ IH vuông góc với MN (H thuộc MN),IK vuông với MP (K thuộc MP). Chứng minh IH=IK
Cho MN=4cm ,MP= 5cm,NP=6cm .Chứng minh M,N,P không thẳng hàng
Ta chứng mnh không có tổng độ dài hai cạnh nào bằng độ dài cạnh còn lại
Vì \(\hept{\begin{cases}MN+MP=9\ne6=NP\\MN+NP=10\ne5=MP\\MP+NP\ne11\ne4=MN\end{cases}}\)
Nên không có điểm nào thẳng hàng
Vậy....................
TA CO : MN+MP=4+5=9 > NP
MN+NP=4+6=10 >MP
MP+NP=5+6>MN
=>M, N, P không thẳng hàng
cho tam giác ABC có AB=5cm,AC=10cm,BC=10cm. M,N,P lần lượt là trung điểm của AB,AC,BC.
a) chứng minh MN, MP, NP là đường trung bình của tam giác ABC.
b) Tính MN, MP, NP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình của ΔBAC
Suy ra: MP//AC và \(MP=\dfrac{AC}{2}=5\left(cm\right)\)
Xét ΔABC có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔABC
Suy ra: NP//AB và \(NP=\dfrac{AB}{2}=2.5\left(cm\right)\)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
Tính trọng lượng của các vật có khối lượng sau:
m1= 250g => P1=…….
m2= 5kg => P2=………..
m3= 2 tạ => P3=……….
m4= 0,3 tấn => P4=……….
250g = 0,25 kg
2 tạ = 200kg
0,3 tấn = 300 kg
\(P=10.m_1=0,25.10=2.5\left(N\right)\)
\(P=10.m_2=10.5=50N\\ P=10.m_3=10.200=2000N\\ P=10.m_4=10.300=3000N\)
m1 = 250g = 0,25kg => P1 = 10.m = 10.0,25 = 2,5 (N)
m2=5kg => P2=10.m=10.5=50 (N)
m3=0,3 tạ=30kg => P3=10.m=10.30=300 (N)
m4=03 tấn=300kg =>P3=10.m=10.300=3000 (N)
Chúc em học giỏi
Chứng minh rằng m=n=p biết m2+n2+p2-mp-np-mn=0
Ta có : \(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)=a^2-ab-ab+b^2=a^2-2ab+b^2\)
\(\Rightarrow m^2+n^2+p^2-mp-np-mn=0\)
\(\Leftrightarrow2m^2+2n^2+2p^2-2mp-2np-2mn=0\)
\(\Leftrightarrow\left(m^2-2mp+p^2\right)+\left(n^2-2mn+m^2\right)+\left(p^2-2np+n^2\right)=0\)
\(\Leftrightarrow\left(m-p\right)^2+\left(n-m\right)^2+\left(p-n\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}m-p=0\\n-m=0\\p-n=0\end{cases}\Leftrightarrow}m=n=p\left(ĐPCM\right)\)
Ta có: m^2 + n^2 + p^2 - mp - np - mn = 0 => m^2 + n^2 + p^2 = mp + np + mn
=> mp = m^2 => m = p;
=> mn = n^2 => m = n;
=> np = p^2 => n = p.
Vậy m = n = p.
Xong rùi đó. k cho mình nha!
cho tam giác MNP vuông tại M có NP=2 MN qua M kẻ đt d song song vs NP trên nửa mặt phẳng MN có chứa điểm P lấy điểm I thuộc d sao cho MN=IP
a, chứng minh MN//IP. MN=IP
b, lấy điểm E thuộc NP sao cho ME=NE chứng minh E là trung điểm NP
c, gọi F là trung điểm MI , PF cắt MN tại K chứng minh KE vuông góc vs NP
d, chứng minh KI// MP . KI=MP
e, EF cắt KI tại H chứng minh H là trung điểm KI