Những câu hỏi liên quan
NN
Xem chi tiết
PL
17 tháng 7 2021 lúc 7:01

undefined

Bình luận (1)
NN
Xem chi tiết
H24
3 tháng 9 2021 lúc 15:49

1have to

2 had to

3shouldn't

4has to

 

Bình luận (0)
DN
Xem chi tiết
NL
12 tháng 7 2021 lúc 22:43

12.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)

\(\Rightarrow M=\sqrt{2}\)

13.

Pt có nghiệm khi:

\(5^2+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow2m\le24\)

\(\Rightarrow m\le12\)

Bình luận (0)
NL
12 tháng 7 2021 lúc 22:47

14.

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=k2\pi\)

15.

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

Đáp án A

16.

\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)

Có \(1008+1008=2016\) nghiệm

Bình luận (0)
DN
Xem chi tiết
NL
12 tháng 7 2021 lúc 23:21

1.

\(\Leftrightarrow1+2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=3\)

\(\Leftrightarrow sinx+\sqrt{3}cosx=2\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow x-\dfrac{\pi}{6}=k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)

2.

\(cos2x=-1\)

\(\Leftrightarrow2x=\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Bình luận (0)
NL
12 tháng 7 2021 lúc 23:25

3.

\(\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1+cosx\right)\left(1-cosx\right)\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất là \(x=\dfrac{\pi}{6}\)

4.

\(1-cos2x-1-cos6x=0\)

\(\Leftrightarrow cos6x=-cos2x=cos\left(\pi-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=\pi-2x+k2\pi\\6x=2x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Pt có 6 nghiệm trên khoảng đã cho

Bình luận (0)
NT
12 tháng 7 2021 lúc 23:22

Câu 1: C

Câu 2: A

Bình luận (0)
DN
Xem chi tiết
NL
12 tháng 7 2021 lúc 23:15

6.

\(sin3x+cos2x=1+sin3x-sinx\)

\(\Leftrightarrow cos2x=1-sinx\)

\(\Leftrightarrow1-2sin^2x=1-sinx\)

\(\Leftrightarrow2sin^2x-sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

7.

\(\sqrt{2}sinx-2\sqrt{2}cosx=2-2sinx.cosx\)

\(\Leftrightarrow\sqrt{2}sinx\left(\sqrt{2}cosx+1\right)-2\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}sinx-2\right)\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow cosx=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow x=\pm\dfrac{3\pi}{4}+k2\pi\)

\(\left(\dfrac{3\pi}{4}\right).\left(-\dfrac{3\pi}{4}\right)=-\dfrac{9\pi^2}{16}\)

Bình luận (0)
NL
12 tháng 7 2021 lúc 23:16

8.

\(2sinx.cosx+3cosx=0\)

\(\Leftrightarrow cosx\left(2sinx+3\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x=\dfrac{\pi}{2}\) có 1 nghiệm trong khoảng đã cho

9.

\(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\) 

Đáp án D

Bình luận (0)
NT
12 tháng 7 2021 lúc 23:22

Câu 6: C

Bình luận (0)
KK
Xem chi tiết
QQ
Xem chi tiết
DN
Xem chi tiết
HP
13 tháng 7 2021 lúc 17:44

11.

\(sin^2x-4sinx.cosx+3cos^2x=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-3cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-3cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=3cosx\end{matrix}\right.\)

Với \(cosx=0\Rightarrow\) pt vô nghiệm

Với \(cosx\ne0\)

\(pt\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan3+k\pi\end{matrix}\right.\)

Bình luận (0)
HP
13 tháng 7 2021 lúc 17:45

12.

\(pt\Leftrightarrow\sqrt{3}tanx+1=0\)

\(\Leftrightarrow tanx=-\dfrac{\sqrt{3}}{3}\)

\(\Leftrightarrow x=-\dfrac{\pi}{6}+k\pi\)

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 6 2024 lúc 10:45

Câu 6: Để hàm số y=(1-m)x+3 nghịch biến trên R thì 1-m<0

=>m>1

=>Chọn B

Câu 7: D

Câu 10: (D)//(D')

=>\(\left\{{}\begin{matrix}3m+1=2\left(m+1\right)\\-2\ne-2\left(loại\right)\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

=>Chọn D

Câu 11: \(x^2+2x+2=\left(x+1\right)^2+1>=1>0\forall x\)

=>\(\sqrt{x^2+2x+2}\) luôn xác định với mọi số thực x

=>Chọn A

Câu 12: Để hai đường thẳng y=x+3m+2 và y=3x+2m+3 cắt nhau tại một điểm trên trục tung thì \(\left\{{}\begin{matrix}1\ne3\left(đúng\right)\\3m+2=2m+3\end{matrix}\right.\)

=>3m+2=2m+3

=>m=1

=>Chọn C

Bình luận (0)