tìm max , min của \(y=\sqrt{x-1}+\sqrt{4-x}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm min, max của: \(P=\sqrt[4]{1+x}+\sqrt[4]{1-x}+\sqrt[4]{1-x^2}\)
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
Cho x y z > 0 và x+y+z=4. Tìm Max và Min của \(C=\sqrt{2x+1}+\sqrt{3y+1}+\sqrt{4z+1}\)
bạn có thể dùng bđt phụ này để chứng minh
\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Tìm min của biểu thức
\(A=32\frac{x}{y}+2008\frac{y}{x}\left(vớix+\frac{1}{y}\le1\right)\)
Tìm max và min của
\(B=3\sqrt{x-1}+4\sqrt{5-x}\)
Tìm:
Min và Max của \(x^2+1\over x^2-x+1\)Min và Max của x+y. Cho x; y thuộc R và x2+y2=1Min của \(\sqrt{x^2+2x+1} + \sqrt{x^2-2x+1}\)Max của \(\sqrt{x-2} + \sqrt{3-x}\)Min của 5x2-12xy+9x2-4x+4Max của 15-10x-10x2+24xy-16y2Min của x(x+1)(x+2)(x+3)Min của x2-6x3+10x2-6x+9P/s: Ai làm được bài nào thì giúp tớ nhé.
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
tìm min và max của : \(\sqrt{2+x}+\sqrt{2-x}-\sqrt{4-x^2}\)
Lời giải:
Đặt $\sqrt{2+x}=a; \sqrt{2-x}=b$. ĐK: $a,b\geq 0$
$a^2+b^2=4$
Gọi biểu thức cần tìm min max là $D$
$D=a+b-ab=(a-2)(2-b)+4-(a+b)$
Vì $a^2+b^2=4\Rightarrow a,b\leq 2$
$\Rightarrow (a-2)(2-b)\leq 0$
Mặt khác: $a^2+b^2=4\Rightarrow (a+b)^2=4+2ab\geq 4$
$\Rightarrow a+b\geq 2$
Do đó: $D=(a-2)(2-b)+4-(a+b)\leq 4-(a+b)\leq 2$
Vậy $D_{\max}=2$ khi $x=\pm 2$
--------------------
$4=a^2+b^2\geq 2ab\Rightarrow ab\leq 2$
$D=a+b-ab=\sqrt{4+2ab}-ab$
$=\sqrt{4+2ab}-2\sqrt{2}-(ab-2)+2\sqrt{2}-2$
$=\frac{2(ab-2)}{\sqrt{4+2ab}+2\sqrt{2}}-(ab-2)+2\sqrt{2}-2$
$=(ab-2)(\frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1)+2\sqrt{2}-2$
Vì $ab\leq 2\rightarrow ab-2\leq 0$
$ab\geq 0\Rightarrow \frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1 <\frac{2}{\sqrt{4}+2\sqrt{2}}-1<0$
$\Rightarrow D\geq 0+2\sqrt{2}-2=2\sqrt{2}-2$
Vậy $D_{\min}=2\sqrt{2}-2$ khi $x=0$
1)TÌM H min = \(\sqrt{x^2+4}+\sqrt{x^2+8x+17}\)
2) tìm G min,max A=3x+x\(\sqrt{5-x^2}\)
3)tìm min,max B=\(\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)
câu 1
ta có .....
lười viết Min - cốp xki nha
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)
nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )
Tìm max và min của A=\(\sqrt{x}+\sqrt{y}\) biết x,y là nguyện của \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=x^2+y^2\)
Tìm Min,Max của Q=x\(\sqrt{x}\)+y\(\sqrt{y}\)Biết \(\sqrt{x}+\sqrt{y}=1\)
\(Q=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)\)
\(=x+y-\sqrt{xy}\)
Đặt \(a=\sqrt{x},b=\sqrt{y}\) (\(a,b\ge0\))
Ta đưa bài toán trở về dạng tìm max và min của biểu thức \(Q=a^2+b^2-ab\) biết \(a+b=1\)
\(Q=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3.\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a=b\\a,b\ge0\end{cases}}\Leftrightarrow x=y=\frac{1}{4}\)
Lại có \(\sqrt{x}+\sqrt{y}=1\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)
Khi đó ta có \(Q\le1\)
Đẳng thức xảy ra khi x = 0 , y = 1 hoặc x = 1 , y = 0
Vậy : minQ = 1/4 <=> x = y = 1/4
maxQ = 1 <=> (x,y) = (0;1) ; (1;0)