A=1+2+2^2+...+2^4
Rút gọn các biểu thức sau:4
a,(x-2)^3-x(x-1)(x+1)+6x(x-3)
b,(2x-3y^2-5)^2-(3y^2-2x+5)^2
c,(a^2-1)(a^2+a+1)(a^2-a+1)
d,(a-2)(a-1)(a-1)(a+2)(a^2+1)(a^2+4)
e,(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
f,1^2-2^2+3^2-4^2+...+2015^2-2016^2
Cho x,y>0,x+y=1.CM:`A=(x+1/x)^2+(y+1/y)^2>=25/2`
`A=x^2+1/x^2+2+y^2+1/y^2+2`
`=x^2+y^2+1/x^2+1/y^2+4`
`=(x^2+1/(16x^2))+(y^2+1/(16y^2))+4+15/16(1/x^2+1/y^2)`
Áp dụng BĐt cosi và `1/a^2+1/b^2>=8/(a+b)^2`
`=>A>=1/2+1/2+4+15/16(8/(x+y)^2)`
`<=>A>=5+15/2=25/2`
Dấu "=" `<=>x=y=1/2`
Không làm theo cách sau:
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
cho các số thực dương a b c . chứng minh rằng
P=1/(a+b)+1/(b+c)+1/(c+a)>=4/(2a^2+b^2+c^2+4) + 4/(a^2+2b^2+c^2+4) + 4/(a^2+b^2+2c^2+4)
Tập hợp các ước của -8 là
A. A = 1 ; − 1 ; 2 ; − 2 ; 4 ; − 4 ; 8 ; − 8 .
B. A = 0 ; ± 1 ; ± 2 ; ± 4 ; ± 8 .
C. A = 1 ; 2 ; 4 ; 8 .
D. A = 0 ; 1 ; 2 ; 4 ; 8 .
3x^4 + 3x^2y^2 + 6x^3y - 27x^2
x^4 + x^3 - x^2 + x
2x^5 - 6x^4 - 2a^2x^3 - 6ax^3
x^5 + x^4 + x^3 + x^2 + x + 1
x^3 - 1 + 5x^2 - 5 + 3x - 3
1/4.(a + 1)^2 - 4/9.(a - 2)^2
12a^2b^2 - 3.(a^2b^2)^2
4x^2y^2 - (x^2 + y^2 - a^2)^2
(a + b + c)^2 + (a + b - c)^2 - 4c^2
x^3 - 1 + 5x^2 - 5 + 3x - 3
1 . rút gọn 3(2^2+1)(2^4+1)(2^8+1)(2^32+1)(2^64+1)(2^128+1)
2 . Cho a+b+c=0 và a^2+b^2+c^2=10. Tính 1/a^4+b^4+c^4
3 . giải phương trình x^2+1/x^2+y^2+1/y^2=4
1/ \(3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{128}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{128}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{128}+1\right)\)
..................................................................
\(=\left(2^{128}-1\right)\left(2^{128}+1\right)=2^{256}-1\)
2/ Ta có: \(a+b+c=0\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\Leftrightarrow a^2+b^2-c^2=-2ab\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2=4a^2b^2\)
\(\Leftrightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
Ta lại có: \(a^2+b^2+c^2=10\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=100\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=100\Leftrightarrow a^4+b^4+c^4=50\)
\(\Leftrightarrow\frac{1}{a^4+b^4+c^4}=\frac{1}{50}\)
3/ \(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}x=\frac{1}{x}\\y=\frac{1}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)=\left(-1,-1;-1,1;1,-1;1,1\right)\)
1 Cho x,y,z=0 thỏa mãn x^2+y^2+z^2=1 Tìm GTNN của M=1/16x^2+1/4y^2+1/z^2
2 Cho a^2-5a+2=0. Tính P=a^5-a^4-18a^3+9a^2-5a+2017-(a^4-40a^2+4) : a^2
bài 4: (đề 2) Tìm a
a) \(2\dfrac{3}{4}-a+\dfrac{1}{4}=1\dfrac{1}{2}\) b) \(3\dfrac{1}{4}-a-1\dfrac{3}{4}=\dfrac{7}{9}\) c) \(2\dfrac{5}{6}-1\dfrac{1}{2}-a=\dfrac{1}{6}\)
a,a+1/4=2 3/4-1 1/2
a+1/2=5/4
a=5/4-1/2
a=3/4
b,a-7/4=13/4-7/9
a-7/4=89/36
a= 89/36+7/4
a=152/36
c,3/2-a=17/6-1/6
3/2-a=8/3
a= 3/2-8/3
a= -7/6
Bài 6: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
bài1. tính : a. 3 và 2/5 - 1/2 b. 4/5 + 1/5 x 3/4 c. 3 và 1/2 x 1 và 1/7 d. 4 và 1/6 : 2 và 1/3
bài2 : tính : a. 3 x 1/2 +1/4 x1/3 b. 1 và 4/5 - 2/3 : 2 và 1/3
bài 3 tìm x: a. X x 4/5 = 2 và 1/2 b. x : 3/2 = 11/4 - 5/2
sos
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
Bài 2
a) 3 × 1/2 + 1/4 × 1/3
= 3/2 + 1/12
= 18/12 + 1/12
= 19/12
b) 1 4/5 - 2/3 : 2 1/3
= 9/5 - 2/3 : 7/3
= 9/5 - 2/7
= 63/35 - 10/35
= 53/35
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
bủh