cho ví dụ về số hữu tỉ từng trường hợp và nêu tại so ra được như vậy
mình tick cho
cho ví dụ về số hữu tỉ từng trường hợp và nêu tại so ra được như vậy
mình tick cho
a) Nêu hai ví dụ về số hữu tỉ
b) Nêu 2 ví dụ về số vô tỉ
a: 1/2; 2/3
b: \(\sqrt{2};\sqrt{3}\)
a) \(\frac{3}{8}; - 0,2\) là các số hữu tỉ
b) \( - \sqrt 3 ;\pi \) là các số vô tỉ
a 6/3 8/2
b 0,9122111111... 0,1275544...
Số hữu tỉ nào không là số hữu tỉ âm và cũng không là số hữu tỉ dương?
Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?Định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ. Viết công thức.Nêu công thứcNhân hai lũy thừa cùng cơ số.Chia hai lũy thừa cùng cơ số khác 0.Lũy thừa của một lũy thừa.Lũy thừa của một tích.Lũy thừa của một thương.Thế nào là tỉ số của hai số hữu tỉ? Cho ví dụ.Tỉ lệ thức là gì? Phát biểu hai tính chất của tỉ lệ thức. Nêu tính chất của dãy tỉ số bằng nhau.Thế nào là số vô tỉ? Cho ví dụ. Kí hiệu tập hợp các số vô tỉ.Thế nào là số thực? Cho ví dụ. Kí hiệu tập hợp các số thực.Định nghĩa căn bậc hai của một số không âm. Tính √9; √0;√(-3)2Cho ví dụ về các trường hợp về lẫn lộn các gần âm và trường hợp lặp từ và sửa lại các từ đã nêu cho đúng!!
Giúp mình với!! Mình tick cho nhé!! (Không giống sách, chép mạng)
1. Thế nào là số hữu tỉ, số hữu tỉ dương, số hữu tỉ âm? Cho ví dụ.
2. Thế nào là số vô tỉ? Thế nào là số thực? Cho ví dụ.
3. Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?
4. Căn bậc hai của một số không âm a là gì? Cho ví dụ?
5. Tỉ lệ thức là gì? Nêu tính chất cơ bản của tỉ lệ thức. Viết công thức thể hiện tính chất của dãy tỉ số bằng nhau?
6. Khi nào thì hai đại lượng x và y tỉ lệ thuận, tỉ lệ nghịch với nhau? Cho ví dụ?
7. Đồ thị của hàm số y = ax (a 0) có dạng như thế nào?
8. Tần số của một giá trị là gì? Mốt của dấu hiệu là gì? Nêu công thức tính số trung bình cộng của dấu hiệu.
9. Thế nào là đơn thức, đơn thức đồng dạng, đa thức? Cho ví dụ.
10. Khi nào số a được gọi là nghiệm của đa thức P(x)?
10: a được gọi là nghiệm của P(x) khi P(a)=0
7:
Có dạng là một đường thẳng đi qua gốc tọa độ
Số hữu tỉ là gì,cho ví dụ♤♤
Biểu diễn số hữu tỉ trên trục số bằng cách nào♡♡ cho ví dụ
So sánh 2 số hữu tỉ♧♧ cho ví dụ
Số hữu tỉ là số viết được dưới dạng phân số a/b với a,b thuộc Z, b khác 0
VD: 0,6 ; -1,25 ; ...
Cách biểu diễn số hữu tỉ trên trục số là ( Mẹo )
- Nếu tử số < mẫu số thì ta biễu diễn số đó ở điểm 0 đến điểm 1
- Nếu tử số > mẫu số thì ta đưa về hỗn số , lấy phần nguyên làm điểm khoảng cách từ một số nào đó đến số nào đó
VD: Biểu diễn 5/4 trên trục số
- Chia đoạn thẳng đơn vị ( Chẳng hạn đoạn từ điểm 0 đến điểm 1 ) thành bốn phần bằng nhau, lấy một đoạn làm đơn vị mới thì đơn vị mới bằng 1/4 đơn vị cũ...
So sánh số hữu tỉ .
VD; So sánh hỗn số \(-3\frac{1}{2}\) và 0
Ta có ; \(-3\frac{1}{2}\)= \(\frac{-7}{2}\) 0 = \(\frac{0}{2}\)
Vì -7 < 0 và 2 > 0 nên \(\frac{-7}{2}\)<\(\frac{0}{2}\). Vậy \(-3\frac{1}{2}\)< 0
hok tốt nhé...good luck
UKkk... cảm ơn lời khuyên của bn ha...
Chúc...hok ... tốt nghen!
Nêu ví dụ về tập hợp.
Dùng kí hiệu ∈ và ∉ để viết các mệnh đề sau.
a)3 là một số nguyên;
b)√2 không phải là số hữu tỉ
Ví dụ về tập hợp: Toàn bộ học sinh lớp 10A
a) 3 ∈ Z
b) √2 ∉ Q
Bài 1. a/ Hãy lấy ví dụ về số hữu tỉ? b/Cho ví dụ về dãy tỉ số bằng nhau ?
Ví dụ 5: Cho a, b \(\inℤ\)và b > 0. So sánh hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)
Ví dụ 6: Đồng bạch là 1 loại kim hợp có niken, kẽm và đồng, khối lượng của chúng tỉ lệ với các số 3;4;13. Hỏi cần bao nhiêu kilogam niken, kẽm và đồng để sản xuất ra được 150kg đồng bạch ?
Vì dụ 5: Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\) , ta đi so sánh giữa 2 số a (b+1) và b(a+1) .
Xét hiệu: a(b+1) - b(a+1) = ab+ a - (ab +b) = a-b. Ta có 3 trường hợp, với điều kiện b >0:
Trường hợp 1: Nếu a-b = 0 \(\Leftrightarrow\)a = b thì :
a(b+1) - b(a+1) = 0\(\Leftrightarrow\)a(b+1) = b(a+1)
\(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)= \(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)=\(\frac{a+1}{b+1}\).
Trường hợp 2: Nếu a - b< 0 \(\Leftrightarrow\)a < b thì:
a(b+1) - b(a+1)< 0\(\Leftrightarrow\)a(b+1) < b(a+1)
\(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)< \(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\)\(\frac{a}{b}\)< \(\frac{a+1}{b+1}\).
Trường hợp 3: Nếu a-b> 0 \(\Leftrightarrow\) a > b thì:
a(b+1) - b(a+1) > 0 \(\Leftrightarrow\)a(b+1) > b(a+1)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(b+1\right)}\)>\(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)>\(\frac{a+1}{b+1}\).
Ví dụ 6: Bg: Gọi khối lượng của niken, kẽm và đồng theo thứ tự m1, m2, m3. Từ giả thiết ta có: m1+m2+m3 = 150 kg.
\(\frac{m_1}{3}\) =\(\frac{m_2}{4}=\frac{m_3}{13}\Rightarrow\frac{m_1}{3}=\frac{m_2}{4}=\frac{m_3}{13}=\)\(\frac{m_1+m_2+m_3}{3+4+13}=\frac{150}{20}=7,5\)
Từ đó, suy ra m1 = 3.7,5 = 22,5kg, m2 = 4.7,5 = 30 kg và m3 = 13.7,5 = 97,5kg .