Những câu hỏi liên quan
DD
Xem chi tiết
PN
23 tháng 3 2016 lúc 11:45

Với giả sử rằng  \(x\ne0\)  thì ta biến đổi phương trình đã cho dưới dạng:

\(\frac{2004}{2x+1+\frac{1}{x}}+\frac{2005}{2x+2+\frac{1}{x}}=902\)  \(\left(1\right)\)

Đặt  \(2x+\frac{1}{x}+1=t\)  \(\left(2\right)\)  \(\Rightarrow\)  \(2x+\frac{1}{x}+2=t+1\) thì phương trình  \(\left(1\right)\)  trở thành:

\(\frac{2004}{t}+\frac{2005}{t+1}=902\)

\(\Leftrightarrow\)  \(\frac{2004\left(t+1\right)+2005t}{t\left(t+1\right)}=902\)

Khử mẫu ở hai vế của phương trình trên, ta được:

\(2004\left(t+1\right)+2005t=902t\left(t+1\right)\)

\(\Leftrightarrow\)  \(2004t+2004+2005t=902t^2+902t\)

\(\Leftrightarrow\)  \(902t^2-3107t-2004=0\)

\(\Leftrightarrow\)  \(\left(t-4\right)\left(902t+501\right)=0\)

\(\Leftrightarrow\)  \(t=4\)  hoặc  \(t=-\frac{501}{902}\)

\(\text{*)}\)  Với  \(t=4\)  thì  từ  \(\left(2\right)\)  \(\Rightarrow\)  \(2x+\frac{1}{x}+1=4\)  \(\Leftrightarrow\)  \(2x+\frac{1}{x}=3\)  \(\Leftrightarrow\)  \(2x^2+1=3x\)  (do  \(x\ne0\))

\(\Leftrightarrow\)  \(2x^2-3x+1=0\)  \(\Leftrightarrow\)  \(\left(x-1\right)\left(2x-1\right)=0\)  \(\Leftrightarrow\)  \(x=1\)  hoặc  \(x=\frac{1}{2}\)  (thỏa mãn)

\(\text{*)}\)  Với  \(t=-\frac{501}{902}\)  thì  từ  \(\left(2\right)\)  \(\Rightarrow\)  \(2x+\frac{1}{x}+1=-\frac{501}{902}\)  (vô nghiệm)

Vậy, tập nghiệm của phương trình   \(\left(1\right)\)  là   \(S=\left\{1;\frac{1}{2}\right\}\)

Bình luận (0)
TN
Xem chi tiết
NT
Xem chi tiết
HD
24 tháng 11 2017 lúc 22:01

a) Đặt \(u=\sqrt{x^2+1}\left(u>0\right)\Rightarrow u^2-1=x^2\)

Phương trình trở thành :

\(2u^2+6x-\left(2x+6\right)t=0\)

\(\Rightarrow\Delta_t=\left(2x+6\right)^2-48x=\left(2x-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+6-2x+6}{4}=3\\t=\dfrac{2x+6+2x-6}{4}=x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=3\\\sqrt{x^2+1}=x\end{matrix}\right.\)

đến đây thì ez rồi

Bình luận (0)
HD
24 tháng 11 2017 lúc 22:05

c) Ta có :

\(2\sqrt{x^2-4x+5}=2\sqrt{\left(x-2\right)^2+1}\ge2\)

\(\sqrt{\dfrac{1}{4}x^2-x+1+4}=\sqrt{\left(\dfrac{1}{2}x-1\right)^2+4}\ge2\)

\(\Rightarrow2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}\ge4\)

ta lại có: \(-4x^2+16x-12=-4\left(x^2-4x+4\right)+4\le4\)

\(\left\{{}\begin{matrix}VP\ge4\\VT\le4\end{matrix}\right.\)

Dấu bằng xảy ra khi x = 2

vậy x=2 là nghiệm của phương trình

Bình luận (0)
H24
Xem chi tiết
TL
8 tháng 2 2018 lúc 17:30

\(\text{a) }x^2-2005x-2006=0\\ \Leftrightarrow x^2-2006x+x-2006=0\\ \Leftrightarrow\left(x^2-2006x\right)+\left(x-2006\right)=0\\ \Leftrightarrow x\left(x-2006\right)+\left(x-2006\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2006=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2006\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-1;2016\right\}\)

\(\text{b) }\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\)

Lập bảng xét dấu:

x x-2 x-3 2x-8 2 3 4 0 0 0 _ _ _ + + + _ _ + + + _

+) Xét \(x< 2\Leftrightarrow\left(2-x\right)+\left(3-x\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow2-x+3-x+8-2x=9\\ \Leftrightarrow13-4x=9\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\left(TM\right)\)

+) Xét \(2\le x< 3\Leftrightarrow\left(x-2\right)+\left(3-x\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow x-2+3-x+8-2x=9\\ \Leftrightarrow9-2x=9\\ \Leftrightarrow2x=0\\ \Leftrightarrow x=0\left(KTM\right)\)

+) Xét \(3\le x< 4\Leftrightarrow\left(x-2\right)+\left(x-3\right)+\left(8-2x\right)=9\)

\(\Leftrightarrow x-2+x-3+8-2x=9\\ \Leftrightarrow3=9\left(\text{ Vô lí }\right)\)

+) Xét \(x\ge4\Leftrightarrow\left(x-2\right)+\left(x-3\right)+\left(2x-8\right)=9\)

\(\Leftrightarrow x-2+x-3+2x-8=9\\ \Leftrightarrow4x-11=9\\ \Leftrightarrow4x=20\\ \Leftrightarrow x=5\left(TM\right)\)

Vậy tập nghiệm phương trình là \(S=\left\{5;1\right\}\)

Bình luận (0)
H24
7 tháng 10 2017 lúc 8:49

câu b.

|x-2| +|x-3| +|2x-8|

x<2 =>x-2+x-3+2x-8=-9=> 4x=4=> x=1 nhận

2<=x<3 <=>x-2+3-x+8-2x=9=>2x=0=>x=0 loại

3<=x<4<=>x-2+x-3+8-2x =9=> 3=9 loại

x>=4 <=>x-2+x-3+2x-8=9=> 4x=22=> x=11/2nhận

Bình luận (0)
NT
Xem chi tiết
NQ
25 tháng 11 2017 lúc 19:38

a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với

ĐKXĐ :

- Vế trái \(x \ge \frac{4}{3}\)

- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)

Hai điều kiện trái ngược nhau

Vậy phương trình vô nghiệm .

Bình luận (1)
PA
Xem chi tiết

a, Phân tích vế trái bằng \(\left(x-2006\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2006\right)\left(x+1\right)=0\Rightarrow x_1;x_2=2006\)

c, Xét phương trình với 4 khoảng sau : 

\(x< 2;2\le x< 3;3\le x< 4;x\ge4\)

Rồi suy ra nghiệm của phương trình là : \(x=1;x=5,5\)

Bình luận (0)
CM
18 tháng 8 2019 lúc 10:43

a.\(x^2-2005x-2006=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2006\end{cases}}\)

b.Ta co:\(|x-2|+|x+3|+|2x-8|\ge|2x+1|+|8-2x|\ge9|\)

Dau '=' xay ra khi \(2\le x\le4\)

Bình luận (0)
NN
Xem chi tiết
MH
25 tháng 3 2022 lúc 15:10

\(\dfrac{2x-1}{x+1}=\dfrac{-2x+1}{x-5}\left(x\ne-1;5\right)\)

\(\dfrac{2x-1}{x+1}=\dfrac{2x-1}{5-x}\)

\(x+1=5-x\)

\(2x=4\Rightarrow x=2\)

Bình luận (0)
AD
Xem chi tiết
HS
9 tháng 5 2021 lúc 15:38

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)

\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+x-x^2+3x=4x\)

\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0x=0\)

Phương trình có vô số nghiệm , trừ x = -1,x = 3

Vậy ...

\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)

\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)

\(\Leftrightarrow12x+1< 36x+4-24x-3\)

\(\Leftrightarrow12x+1< 12x+1\)

\(\Leftrightarrow12x-12x< 1-1\)

\(\Leftrightarrow0x< 0\)

Vậy S = {x | x \(\in R\)}

 

Bình luận (0)
HN
Xem chi tiết
MH
29 tháng 3 2022 lúc 21:32

a) \(\left(2x-1\right)^2=3x\left(2x-1\right)\)

\(\left(2x-1\right)^2-3x\left(2x-1\right)=0\)

\(\left(2x-1\right)\left(2x-1-3x\right)=0\)

\(\left(2x-1\right)\left(-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

Bình luận (0)
VD
29 tháng 3 2022 lúc 21:32

\(a,\left(2x-1\right)^2=3x\left(2x-1\right)\\ \Leftrightarrow4x^2-4x+1=6x^2-3x\\ \Leftrightarrow6x^2-3x-4x^2+4x-1=0\\ \Leftrightarrow2x^2+x-1=0\\ \Leftrightarrow2x^2+2x-x-1=0\\ \Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(b,ĐKXĐ:x\ne0,2\\ \dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x^2+2x-x+2-2}{x\left(x-2\right)}=0\\ \Rightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
MH
29 tháng 3 2022 lúc 21:33

b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\left(đk:x\ne0,2\right)\)

\(x^2+2x-x+2=2\)

\(x^2+x=0\)

\(x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Bình luận (0)