Những câu hỏi liên quan
TD
Xem chi tiết
H24
Xem chi tiết
NL
1 tháng 3 2021 lúc 23:19

\(VT=\dfrac{\left(a+c\right)^2}{\left(a+c\right)\left(a+b\right)}+\dfrac{\left(b+d\right)^2}{\left(b+c\right)\left(b+d\right)}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)\left(c+d\right)}+\dfrac{\left(d+b\right)^2}{\left(d+a\right)\left(d+b\right)}\)

\(VT\ge\dfrac{\left(2a+2b+2c+2d\right)^2}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(b+d\right)+\left(a+c\right)\left(c+d\right)+\left(a+d\right)\left(b+d\right)}=\dfrac{4\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=4\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Bình luận (0)
HD
Xem chi tiết
MN
Xem chi tiết
NT
14 tháng 12 2021 lúc 9:53

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\\ \Rightarrow ad+ab< bc+ab\\ \Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
DP
Xem chi tiết
NL
20 tháng 12 2020 lúc 16:10

Câu trắc nghiệm này kinh thật :D

\(P=\left(1+36abc\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+36\left(ab+bc+ca\right)\)

\(P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+36\left(ab+bc+ca\right)\)

\(P=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ca}+3+36\left(ab+bc+ca\right)\)

\(P=\dfrac{\left(a+b\right)^2}{ab}+\dfrac{\left(b+c\right)^2}{bc}+\dfrac{\left(c+a\right)^2}{ca}+36\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{\left(2a+2b+2c\right)^2}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{4}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)

\(P\ge2\sqrt{\dfrac{144\left(ab+bc+ca\right)}{ab+bc+ca}}-3=21\)

Vậy \(P\ge21\)

Bình luận (0)
TD
Xem chi tiết
TV
11 tháng 5 2017 lúc 18:54

Ta có : (a+b)/(a+b+c)<(a+b)/(a+b+c+d) ; (b+c)/(b+c+d)<(b+c)/(a+b+c+d) ; (c+d)/(c+d+a)>(c+d)(a+b+c+d) ; (a+d)/(a+b+d)>(a+d)(a+b+c+d)

Cộng 4 bất đẳng thức trên rồi rút gọn vế phải sẽ ra kết quả như đề bài

Trên trường tui không nghĩ ra về nhà mới phát hiên ra được

Bình luận (0)
TT
11 tháng 5 2017 lúc 19:38

Cho mk hỏi bạn TMDuc va TNVuong thi cùng trường à. Sao lại có bài chung thế.

Bình luận (0)
LH
Xem chi tiết