Những câu hỏi liên quan
BL
Xem chi tiết
TL
31 tháng 7 2020 lúc 21:02

ta có tích từ 3 stn liên tiếp trở lên thì chia hết cho 3

theo đề bài 9n+11 là tích k số tự nhiên liên tiếp mà 9n+11 không chia hết cho 3 nên k=2

đặt 9n+11=a(a+1) với a là số nguyên dương

9n+11=a(a+1) <=> 4.9n+45=4a2+4a+1

<=> (2a+1)2-(2.3n)2=45 <=> (2a+1-2.3n)(2a+1+2.3n)=45

vì a,n nguyên dương và 2a+1+2.3n >=9 nên xảy ra các trường hợp sau

th1: \(\hept{\begin{cases}2a+1+2\cdot3^n=9\left(1\right)\\2+1+2\cdot3^n=5\left(2\right)\end{cases}}\)

từ (1) và (2) ta có 4a+2=14 <=> a=3 => 9n+11=12 <=> 9n=1 <=> n=0 (loại)

th2: \(\hept{\begin{cases}2a+1-2\cdot3^n=15\left(3\right)\\2a+1+2\cdot3^n=3\left(4\right)\end{cases}}\)

từ (3) và (4) ta có 4a+2=18 <=> a=4 => 9n+11=20 <= 9n=9 <=> n=1 (tm)

th3: \(\hept{\begin{cases}2a+1-2\cdot3^n=45\left(5\right)\\2a+1+2\cdot3^n=1\left(6\right)\end{cases}}\)

từ (5) và (6) ta có 4a+2=46 <=> a=11 => 9n+11=132 <=> 9n=121 => không tồn tại n

vậy n=1

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 8 2020 lúc 9:26

Vì \(9^n+11⋮̸3\)nên k<3 => k=2 (k>1) (với n thuộc N*)

Ta có: \(9^n-1⋮\left(9-1\right)\Leftrightarrow9^n-1⋮8\Leftrightarrow9^n-1⋮4\Leftrightarrow9^n+11⋮4\)

Mà \(9^n+11\)là tích của hai STN liên tiếp nên 1 trong 2 số bằng 4, số còn lại là 5 (vì 9^n+11 không chia hết cho 3)

Từ đó, ta có 9^n+11=4*5=20 => 9^n=9 => n=1 

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 8 2020 lúc 9:37

à, bài t sai r nhé 

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NC
9 tháng 10 2019 lúc 11:29

a) Có: \(n=24k-7=12.2k-12+12-7=12.\left(2k-1\right)+5\) chia 12 dư 5.

b) 

\(n=11...122...22\) ( có 20 chữ số 1 và 20 chữ số 2)

\(=111...11.10^{20}+222...222\) ( mỗi 111....111 có 20 chữ số 1 và 22...22 có 20 chữ số 2)

\(=111...11.10^{20}+2.111...11\) ( mỗi 111...111 có 20 chữ số 1)

\(=111...11\left(10^{20}+2\right)\) ( có 20 chữ số 1)

\(=111...111\left(999...999+1+2\right)\)( có 20 chữ số 1 và 20 chữ số 9)

\(=111...111\left(333...333\times3+3\right)\)( 111....111 có 20 chữ số 1 và 333...333 có 20 chữ số 3)

\(=333...333\left(333...333+1\right)\)( mỗi 333...333 gồm 20 chữ số 3)

là tích của hai số tự nhiên liên tiếp.

Bình luận (0)
NC
Xem chi tiết
NL
26 tháng 12 2020 lúc 0:00

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

Bình luận (3)
NL
26 tháng 12 2020 lúc 0:08

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp

Bình luận (2)
LN
Xem chi tiết
NN
3 tháng 1 2016 lúc 15:00

* Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

Bình luận (0)
TH
21 tháng 11 2019 lúc 6:08
Auhwhnsjuwjwjsi wnsjsn sjsnnshsnwb Áiiisiwooeoeoskks
Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NN
3 tháng 1 2016 lúc 15:05

* Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

Bình luận (0)
DX
15 tháng 8 2017 lúc 9:39

\(\sqrt[cd\cos]{d}\orbr{\begin{cases}d\\d\end{cases}}d\)

Bình luận (0)
TK
10 tháng 12 2024 lúc 22:00

K=1

 

Bình luận (0)
BB
Xem chi tiết
SY
Xem chi tiết

\(n\) \(là\)\(tổng\)\(5\)\(số\)\(tự\)\(nhiên\)\(liên\)\(tiếp\)\(\Rightarrow n⋮5\)

\(tương\) \(tự\)\(\hept{\begin{cases}n⋮7\\n⋮9\end{cases}}\)

\(nói\) \(cách\)\(khác\)\(n\)\(là\)\(BCNN\left(5;7;9\right)\)

\(Vậy\) \(n=315\)

Bình luận (0)
SY
Xem chi tiết
SY
Xem chi tiết
SY
18 tháng 4 2019 lúc 13:37

nhanh lên giúp mình đi các bạn

Bình luận (0)
CT
18 tháng 4 2019 lúc 13:39

ko biết sai hay đúng đâu nhé.là 0

Bình luận (0)