tính giá trị của biểu thức : A=a^2/a^2-b^2-c^2+b^2/b^2-a^2-c^2+c/c^2-a^2-b^2
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
Bài của mình đây , ko biết có đúng ko
a) Tìm giá trị nhỏ nhất của biểu thức \(x^2-8x+5\)
b) Cho \(a^3+b^3+c^3=3abc\) và \(a+b+c\) ≠ 0
Tính giá trị của biểu thức N =\(\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Cho a+b+c =0 . Tính giá trị của biểu thức P = a^2+b^2 +c^2/a.(a-b) +b.(b-c) +c.(c-a)
Lời giải:
Ta có:
$a(a-b)+b(b-c)+c(c-a)=a^2+b^2+c^2-ab-bc-ac$
$=\frac{3}{2}(a^2+b^2+c^2)-[\frac{1}{2}(a^2+b^2+c^2)+ab+bc+ac]$
$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a^2+b^2+c^2+2ab+2bc+2ac)$
$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a+b+c)^2$
$=\frac{3}{2}(a^2+b^2+c^2)$
$\Rightarrow P=\frac{a^2+b^2+c^2}{\frac{3}{2}(a^2+b^2+c^2)}=\frac{2}{3}$
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2
\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)
cho a+b+của biểu thức=o(a khác o, b khác o c khác 0)tính giá trị của biểu thức a=\(\frac{a^2}{a^2-b^2-c^2}\)+\(\frac{b^2}{b^2-c^2-a^2}\)+\(\frac{c^2}{c^2-a^2-b^2}\)
cho a/b+c=b/c+a=c/a+b=1 tính giá trị của biểu thức A= a^2/b+c=b^2/c+a=c^2/a+b
a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b)
= a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0
1.Cho a,b,c khác 0 và a+b+c = 0.Tính giá trị của biểu thức
Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 + 1/a^2+c^2-b^2
2.Cho hai số thực a,b thỏa mản a>b và ab=2.Tìm giá trị nhỏ nhất của biểu thức M=a^2+b^2/a-b.
Giúp tớ lẹ lẹ nhé ! Cảm ơn nhiều nhiều ! :):):)
từ giả thiết ta có
a+b+c=0
<=> a=-(b+c0
a2=b2 +c2 +2bc
tương tự b2=a2+c2+2ac
c2=a2+b2+2ab
thay vào Q ta đc
\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)
\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)
\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)
\(Q=\frac{-b-a-c}{2abc}\)
\(Q=\frac{-\left(a+b+c\right)}{2abc}\)
\(Q=0\)
Vậy với a,b,c khác 0, a+b+c=0 thì Q=0
Cho a + b + c = 0, abc khác 0. Tính giá trị biểu thức a^2/a^2-b^2-c^2 + b^2/b^2-c^2-a^2 + c^2/c^2-a^2-b^2