Những câu hỏi liên quan
NH
Xem chi tiết
LH
17 tháng 12 2016 lúc 20:32

P=3a-2b\2a+5 + 3b-a\b-5

=2a+a-2b\2a-5 + -a+2b+b\b-5

=2a+(a-2b)\2a-5 + -(a-2b)+b

=2a+5\2a-5 + -5+b\b-5

=-(2a-5)\(2a-5) + (b-5)\(b-5)

=-1+1=0

Bình luận (0)
LH
17 tháng 12 2016 lúc 20:35

Bài của mình đây , ko biết có đúng ko

Bình luận (0)
PT
Xem chi tiết
N2
Xem chi tiết
AH
30 tháng 12 2022 lúc 23:10

Lời giải:
Ta có:

$a(a-b)+b(b-c)+c(c-a)=a^2+b^2+c^2-ab-bc-ac$

$=\frac{3}{2}(a^2+b^2+c^2)-[\frac{1}{2}(a^2+b^2+c^2)+ab+bc+ac]$

$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a^2+b^2+c^2+2ab+2bc+2ac)$
$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a+b+c)^2$

$=\frac{3}{2}(a^2+b^2+c^2)$

$\Rightarrow P=\frac{a^2+b^2+c^2}{\frac{3}{2}(a^2+b^2+c^2)}=\frac{2}{3}$

Bình luận (0)
MT
Xem chi tiết
MT
Xem chi tiết
LL
28 tháng 8 2021 lúc 22:31

\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)

Bình luận (0)
PQ
Xem chi tiết
HN
Xem chi tiết
NP
11 tháng 12 2017 lúc 16:20

a/(b+c) + b/(c+a) + c/(a+b) = 1 

A = a²/(b+c) + b²/(c+a) + c²/(a+b) 

= a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)] 

= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1] 

= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c 

= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c) 

= (a+b+c) - (a+b+c) = 0

Bình luận (0)
TT
Xem chi tiết
NN
21 tháng 9 2018 lúc 3:52

từ giả thiết ta có

a+b+c=0

<=>  a=-(b+c0

         a2=b2  +c2 +2bc

tương tự   b2=a2+c2+2ac

                c2=a2+b2+2ab

thay vào Q ta đc

\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)

\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)

\(Q=\frac{-b-a-c}{2abc}\)

\(Q=\frac{-\left(a+b+c\right)}{2abc}\)

\(Q=0\)

Vậy với a,b,c khác 0, a+b+c=0 thì Q=0

Bình luận (0)
NP
Xem chi tiết