MT

Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2

LL
28 tháng 8 2021 lúc 22:31

\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
NT
Xem chi tiết
NK
Xem chi tiết
VL
Xem chi tiết
NQ
Xem chi tiết
HN
Xem chi tiết
CD
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết