Cho tam giác ABC cân tại A có AB = AC = b; BC = a. Đường phân giác BD của tam giác ABC có độ dài bằng cạnh bên của tam giác ABC. CMR: \(\frac{1}{b}-\frac{1}{a}=\frac{b}{\left(a+b\right)^2}\)
Câu 2 a. Cho tam giác ABC cân tại A có AB = 3cm. Tính độ dài cạnh AC ?
b) Cho tam giác ABC cân tại A có . Tính số đo góc C ?
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Cho tam giác ABC cân tại C khi đó
Cho Tam giác ABC cân tại C khi đó
A. AB = AC.
B. AC = BC
C. BC = BA.
D. AB = AC = BC
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Cho tam giác ABC cân tại A có AB=AC=5cm, BC=6cm. Tia phân giác B cắt AC tại M. Phân giác góc C cắt AB tại N
a) ANC đồng dạng tam giác AMB
a: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc NAC chung
=>ΔANC đồng dạng với ΔAMB
bài1 Cho tam giác ABC cân tại A .D là điểm trên cạnh ac .đường thẳng qua d song song với AB cắt BC tại E Chứng minh tam giác dec cân
bai2 Cho tam giác ABC có A bằng 80 độ B bằng 50 độ
a chứng minh tam giác ABC cân
B đường thẳng song song với BC cắt tia đối của tia AB tại D cắt tia đối của tia AC tại E Chứng minh tam giác ade cân
bai3 Cho tam giác ABC cân tại A đường thẳng song song với b c cắt các cạnh AB AC lần lượt tại d và e Gọi O là giao điểm của Be và CD Chứng minh
a tam giác ade cân
B tam giác OBC cân
cac bqn lam nhanh giup minh minh dang can gqp
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
cho tam giác ABC cân tại A có AB=AC=5cm,Bc=6cm.tia phân giác góc B cắt AC tại M,phân giác góc C cắt AB tại N
a)tính AM,MN,CN
b)tính tỉ số diện tích tam giác AMN và tam giác ABC
cho tam giác abc cân tại a có ab = ac =5cm bc=8cm kẻ ah vuông góc với bc (H thuộc B) b) Kẻ HD vuông góc với AB (D thuộc AB) ;HE vuông góc với AC (E thuộc AC) . CMR Tam giác HDE là tam giác cân
b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có
BA=CA(ΔBAC cân tại A)
AH chung
Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(Hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
câu a đâu rồi bạn ơi ???
Cho Tam giác ABC cân tại a có AH vuông góc với BC . Từ H kẻ HE vuông góc AC tại E , HF vuông góc AC tại F . Chứng minh
A ) Tam giác AEF cân , HE = HF
B) EF // BC
C) gọi HE cắt AC tại M HF cắt AB tại N . Chứng minh Tam giác HMN cân
Bài 1: Cho tam giác ABC vuông tại A, tanB=3\4, AB=4cm. Giải tam giác?
Bài 2 : Cho tam giác ABC cân tại A, góc BAC=42, AB=AC=7cm,
a Đường cao AH=?
b BC=?
c Đường cao CK=?
Bài 3: Cho tam giác ABC cân tại A, AB=AC=8,5cm, BC=8cm.
a Tính các góc của tam giác ABC?
b Diện tích của tam giác ABC=?
giải từng bước...