\(gpt:x^2+\frac{4x^2}{\left(x+2\right)^2}=5\)
\(\frac{3.x^5\left(4x^2+5\right)^2}{\left(4x^2+5\right)^2}-\frac{x\left(3x^4+7\right)^2}{3x^4+7}=2x-5\)
Bài này chắc giải phương trình . Lần sau nếu bn muôn hỏi bài nào thì ghi rõ tên đề bài nhé, chứ như thế này ko biết đề bài như thế nào đâu .Đây mik làm đại nhé.
\(\frac{3x^5\left(4x^2+5\right)^2}{\left(4x^2+5\right)^2}-\frac{x\left(3x^4+7\right)^2}{3x^4+7}=2x-5\)
\(\Leftrightarrow3x^5-x\left(3x^4+7\right)=2x-5\)
\(\Leftrightarrow3x^5-3x^5-7x=2x-5\)
\(\Leftrightarrow-7x-2x=-5\)
\(\Leftrightarrow-9x=-5\Leftrightarrow x=\frac{5}{9}\)
rút gọn
a) \(\frac{1}{x-y}-\frac{3xy}{x^2-y^2}+\frac{x-y}{x^2+x+y^2}\)
b) \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+4}+\frac{1}{x^2+5x+6}\)
c) \(\frac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\frac{x^2-25}{9x^2.\left(2x+5\right)^2}-\frac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
Giải phương trình :
\(\left(\frac{8}{3}\right)^{x^2-x+1}\left(\frac{3}{5}\right)^{2x^2-3x+2}\left(\frac{5}{7}\right)^{3x^2-4x+3}\left(\frac{7}{2}\right)^{4x^2-5x+4}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
\(\frac{3x^5\left(4x^2+5\right)^2}{\left(4x^2+5\right)^2}-\frac{x\left(3x^4+7\right)^2}{3x^4+7}=2x-5\)
Tìm x
1)2x(25x-4)-(5x-2)(5x+1)=8 / 5)\(2\left(x-2\right)-3\left(3x-1\right)=\left(x-3\right)\)
2)x(4x-3)-(2x-2)(2x-1)=5 / 6)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
3)\(\frac{5}{2x+3}+\frac{3}{9-x^2}=\frac{8}{7\left(x=3\right)}\) / 7)\(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)
4)\(\frac{2}{3\left(x-2\right)}+\frac{5}{12-3x^2}=\frac{3}{4\left(x+2\right)}\) / 8)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Đây là lớp 8 nha các b giúp mk với
Do mk viết nhầm
Tìm x:
|5x-3|-3x=7
|x-3|+|x-5|-4x=-28
\(\left|x+2\right|+\left|x+\frac{3}{5}\right|+\left|x+\frac{1}{2}\right|=4x\)
\(\left|2x-1\right|+\left(4x^2-1\right)^2=0\)
|5x-3| - 3x = 7
*Nếu \(x\ge\frac{3}{5}\)
5x - 3 - 3x = 7
2x = 10
x = 5 ( tm)
*Nếu \(x< \frac{3}{5}\)
3 - 5x - 3x = 7
-8x = 4
x = \(-\frac{1}{2}\)( tm )
Làm hơi khó nhìn , thông cảm. Mệt rùi :)
|x - 3| + |x - 5| - 4x = -28
*Nếu x < 3
3 - x + 5 - x - 4x = -28
-6x = -36
x = 6 ( loại do ko tm khoảng đang xét )
* nếu 3 < x < 5
x - 3 + 5 - x - 4x = -28
-4x = -30
x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )
*Nếu x > 5
x - 3 + x - 5 - 4x = -28
-2x = -20
x = 10 ( tm)
Vậy x =10
|x + 2| + |x + 3/5| + |x+1/2| = 4x
Câu này cũng xét khoảng x < -2
-3/5 < x < -1/2
x > -1/2
|2x-1| + ( 4x2 - 1)2 = 0
Vì |2x - 1| > 0 với mọi x
( 4x2 - 1)2 > 0 với mọi x
=> |2x-1| + (4x2 - 1)2 > 0 với mọi x
Dấu "=" xảy ra <=> 2x - 1= 4x2 - 1 = 0
<=> x = 1/2
Đây gọi là phương pháp dùng bất đẳng thức
Giải các phương trình sau :
a) \(x^4-\left(x^2+2\right)=4\)
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c) \(\frac{2x-10}{4}=5+\frac{2-3x}{6}\)
d) \(\frac{2x}{\left(x-3\right)\left(x+1\right)}+\frac{x}{2\left(x-3\right)}=\frac{x}{2x+2}\)
e) \(\left(\frac{x+2}{x}\right)^2+\left(\frac{x}{x+2}\right)^2=2\)
f) \(\left(x-a\right)\left(x+a\right)+2x+a^2=-1\)
g) \(\frac{x-a}{2a}+\frac{x-2a}{3a}+\frac{x-3a}{4a}+\frac{x-4a}{5a}=-4\)
h) \(\left(x^2-3x+4\right)^2=\left(x^2-2x+3\right)\left(x^2-4x+5\right)\)
i) \(\frac{x^2-4x+12}{x^2-4x+6}=x^2-4x+8\)
Giải các phương trình:
\(a.\left(x^2+1\right)\left(x^2-4x+4\right)=0\)
\(b.\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(c.\left(3,3-11x\right)\left(\frac{7x+2}{5}+\frac{2\left(1-3x\right)}{3}\right)=0\)
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
Tìm x
1) 70 : \(\frac{4x+720}{x}\) = 1/2
2) \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\) Với x không thuộc { -2; -5; -10; -17 }
\(1\)) \(70:\frac{4x+720}{x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{4x+720}{x}=70:\frac{1}{2}\)
\(\Leftrightarrow\frac{4x+720}{x}=140\)
\(\Leftrightarrow\left(4x+720\right):x=140\)
\(\Leftrightarrow4x+720=140.x\)
\(\Leftrightarrow4x-140x=-720\)
\(\Leftrightarrow x.\left(-136\right)=-720\)
\(\Leftrightarrow x=-720:\left(-136\right)\)
\(\Leftrightarrow x=\frac{90}{17}\)
\(2\)) Mình đang nghĩ