cho( a,b)=1 .C/M (8a+3b,5a+2b)=1
Cho (a,b)=1.C/M rằng (8a+3b,5a+2b)=1.
Giúp mk nhé mai mình nộp bài rồi.
cho (a,b)=1 CMR (8a+3b,5a+2b)=1
Gọi ước chung lớn nhất của 8a + 3b và 5a + 2b là d
=> 8a + 3b chia hết cho d => 5.(8a+3b) = 40a + 15b chia hết cho d
=> 5a + 2b chia hết cho d => 8.(5a+2b) = 40a + 16b chia hết cho d
<=> ( 40a + 16b ) - (40a + 15b ) chia hết cho d
= 1 chia hết cho d
=> d = 1
Cho (a; b ) =1. Chứng minh rằng : (8a + 3b; 5a + 2b ) = 1
Cho : a ; b \(\in\) N ; ( a ; b ) = 1 . Chứng minh : \(\dfrac{8a+3b}{5a+2b}\) là phân số tối giản?
Tìm 2 số a , b biết :
4a + 3b = 40 ; 5a - 3b = 5
5a + 3b = 40 ; 8a - b = 6
5a + 2b = 30 ; 5a - 3b = 5
Cho: a,b∈ Z; (a,b)=1. CMR: \(\frac{8a+3b}{5a+2b}\) Tối giản
\(\frac{8a+3b}{5a+2b}=\frac{5a+3a+b+2b}{5a+2b}=\frac{5a+2b}{5a+2b}+\frac{3a+b}{5a+2b}=1+\frac{3a+b}{5a+2b}\)
3a+b và 5a+2b là nguyên tố cùng nhau
=> điều cần CM
1.cho a^2-b^2=4c^2.CM: (5a-3b+8c)(5a-3b-8c)=(3a-5b)^2
2.cho a^2+b^2+c^2=2017. Tính M=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
a, Vì \(a^2-b^2=4c^2\Rightarrow16a^2-16b^2=64c^2\) (1)
Ta có:\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-64c^2\) (2)
Thay (1) vào (2) ta được
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2\)
=> đpcm
b, \(M=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2b-b\right)^2\)
\(=4a^2+4b^2+c^2+4b^2+4c^2+a^2+4c^2+4a^2+b^2\)
\(+8ab-4ac-4bc+8bc-4ab-4ac+8ac-4bc-4ab\)
\(=9.\left(a^2+b^2+c^2\right)=9.2017=18153\)
Vậy M=18153
Cho a,b ngyên tố cùng nhau . CMR : 8a+3b/5a+2b tối giản
\(\frac{8a+3b}{5a+2b}=\frac{5a+3a+b+2b}{5a+2b}=\frac{5a+2b}{5a+2b}+\frac{3a+b}{5a+2b}=1+\frac{3a+b}{5a+2b}\)
⇒ 8a + 3b và 5a + 2b là nguyên tố cùng nhau
⇒ \(\frac{8a+3b}{5a+2b}\) là phân số tối giản
Cách 2 : Gọi d là ƯC ( 8a + 3b; 5a + 2b )
⇒ 8a + 3b ⋮ d ; 5a + 2b ⋮ d
Nên [ ( 8a + 3b ) - ( 5a + 2b ) ] ⋮ d
⇒ [ 2.( 8a + 3b ) - 3.( 5a + 2b ) ] ⋮ d
⇒ [ ( 16a + 6b ) - ( 15a + 6b ) ] ⋮ d
⇒ [ 16a - 15a ] ⋮ d
⇒ 1 ⋮ d ⇒ d = + 1
Vì ƯC ( 8a + 3b; 5a + 2b ) = + 1 nên \(\frac{8a+3b}{5a+2b}\) là phân số tối giản
cho a và b là hai số nguyên tố cùng nhau cmr \(\dfrac{8a+3b}{5a+2b}\) là phân số tối giản