(n+3)^4=(n+3)^5
1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5+...+1/n+2/n+3/n+...+n-1/n
1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5+...+1/n+2/n+3/n+...+n-1/n
1. Tìm a,b,c biết:
a) a/b = 8/5; b/c = 2/7 và a+b+c= 61
b) ab = 1/2; bc= 2/3; ac = 3/4
c) 3a=2b; 5b = 7c và 3a + 5c - 7b= 60
2. tìm các số nguyên n sao cho:
1) 5^n + 5^n+2 = 650
2) 32^-n .16^n = 1024
3) 3^-1 .3^n+ 5. 3^n-1 = 162
4) 125. 5\(\ge\)5^n\(\ge\)5 . 25
5) (n^54)^2 = n
6) 243\(\ge\)3^n\(\ge\)9.27
7) 2^n+3 . 2^n = 144
8)3<3^n\(\le\)234
9) 8. 16\(\ge\)2^n\(\ge\)4
10) 4^15. 9^15<2^n.3^n< 18^16. 2^16
11) 4^11. 25^11\(\le\)2^n. 5^n\(\le\)20^12. 5^12
12)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\).\(\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)= 2^n
13) 9. 27^n= 3^5
14) (2^3 : 4) . 2^n= 4
15) 3^-2 . 3^4. 3^n = 3^7
16)2^-1. 2^n +4.2^n=9.2^5
1/1*2 +1/2*3 +1/3*4 + 1/4*5 +...+1/n*(n+1) 3/1*2+3/2*3+3/3*4+3/4*5+...+3/n*(n+1) tính tổng nha các bạn
\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)
\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)
\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)
\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)
\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)
1. Tìm a,b,c biết:
a) a/b = 8/5; b/c = 2/7 và a+b+c= 61
b) ab = 1/2; bc= 2/3; ac = 3/4
c) 3a=2b; 5b = 7c và 3a + 5c - 7b= 60
2. tìm các số nguyên n sao cho:
1) 5^n + 5^n+2 = 650
2) 32^-n .16^n = 1024
3) 3^-1 .3^n+ 5. 3^n-1 = 162
4) 125. 5\(\ge\)5^n\(\ge\)5 . 25
5) (n^54)^2 = n
6) 243\(\ge\)3^n\(\ge\)9.27
7) 2^n+3 . 2^n = 144
8)3<3^n\(\le\)234
9) 8. 16\(\ge\)2^n\(\ge\)4
10) 4^15. 9^15<2^n.3^n< 18^16. 2^16
11) 4^11. 25^11\(\le\)2^n. 5^n\(\le\)20^12. 5^12
12)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\).\(\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)= 2^n
13) 9. 27^n= 3^5
14) (2^3 : 4) . 2^n= 4
15) 3^-2 . 3^4. 3^n = 3^7
16)2^-1. 2^n +4.2^n=9.2^5
Bài 2:
1: \(5^n+5^{n+2}=650\)
\(\Leftrightarrow5^n\cdot26=650\)
\(\Leftrightarrow5^n=25\)
hay x=2
2: \(32^{-n}\cdot16^n=1024\)
\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)
hay n=-10
13: \(9\cdot27^n=3^5\)
\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)
=>3n=3
hay n=1
viết chương trình tính tổng
s= 1*2/3*4+2*3/4*5+3*4/5*6+...+n*(n+1)/(n+2)*(n+3)
uses crt;
var s:real;
i,n:integer;
begin
clrscr;
readln(n);
s:=0;
for i:=1 to n do
s:=s+(n*(n+1))/((n+2)*(n+3));
writeln(s:4:2);
readln;
end.
Tính toán
1) S = 1+2+3+4+...+n
2) S = 1*2*3...*n
3)S = 2+4+6+...+n
4)S = 1+3+5+...+n
5)S = 2*4*6...*n
6)S = 1-2+3-4+...+n
7)S = -1+2-3+4+...+n
8)S = 1+4+9+16+...+n*n
9)S = 1+9+25+...+( n mod 2 = 1)^2
10)S =4+16+...+( n mod 2 = 0)^2
11)S =5+10+15+...+ n mod 5 =0
12)S = 1+2-3+4+5-6+7+8-9...+n-(n mod 3 = 0 )
13)S = 1+2!+3!+4!...+n!
14)S =1+(1+2)+(1+2+3)+...+( tổng các số từ 1 tới )( i chạy từ 1 tới n)
15)S =1*2+2*3+4*5+...+(n-1)*n
HELP ME!
Chứng minh rằng:
a) A=1/2+2/2^2+3/2^3+4/4^4+...+100/3^100<2
b) B=1/3+2/3^2+3/3^3+...+100/3^100<3/4
c) C=1/2^3+1/3^3+1/4^3+...+1/n^3<1/4 (n thuộc N; n> hoặc = 2)
d) D=1/3^3+1/4^3+1/5^3+...+1/n^3<1/12 (n thuộc N; n> hoặc =3)
e) E=2/1*4/3*6/5*...*200/199<20
f) F=3/4+5/56+7/144+...+2n+1/n^2+(n+1)^2 ( n nguyên dương)
g) G=1/2*(1/6+1/24+1/60+...+1/9240)>57/62
h) H=1/31+1/32+1/33+...+1/2048>3
i) I=(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)<2/5
j) J=1/2!+2/3!+3/4!+...+n-1/n!<2
k) K=1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!<2 (n nguyên dương)
l) 1/6<L=1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
Cho Biểu Thức : �=2�+1�−3+3�−5�−3−4�−5�−3(�∈�,�≠3)A=n−32n+1+n−33n−5−n−34n−5(n∈Z,n=3)
a) Tìm GTLN của phân số A
Đề bị lỗi hiển thị rồi. Bạn nên gõ đề bằng công thức toán để mọi người hiểu đề của bạn hơn nhé.
Lim 3n+4n+3/ 4n+2n-1
Lim 5×2n+3n+2/2n+1+3n+1
Lim 4n-7n/2n+3n×5n
Lim 6×5n+9n/4n×3n+1+7n
Lim √5n/3n+1
Lim 5n+1-21×7n-1/3×10n+6n+2
\(\lim\limits\frac{3^n+4^n+3}{4^n+2^n-1}=\lim\limits\frac{\left(\frac{3}{4}\right)^n+1+3\left(\frac{1}{4}\right)^n}{1+\left(\frac{2}{4}\right)^n-\left(\frac{1}{4}\right)^n}=\frac{0+1+0}{1+0+0}=1\)
\(\lim\limits\frac{5.2^n+9.3^n}{2.2^n+3.3^n}=\lim\limits\frac{5\left(\frac{2}{3}\right)^n+9}{2.\left(\frac{2}{3}\right)^n+3}=\frac{0+9}{0+3}=3\)
\(\lim\limits\frac{4^n-7^n}{2^n+15^n}=\lim\limits\frac{\left(\frac{4}{15}\right)^n-\left(\frac{7}{15}\right)^n}{\left(\frac{2}{15}\right)^n+1}=\frac{0-0}{0+1}=0\)
\(\lim\limits\frac{6.5^n+9^n}{3.12^n+7^n}=\lim\limits\frac{6\left(\frac{5}{12}\right)^n+\left(\frac{9}{12}\right)^n}{3+\left(\frac{7}{12}\right)^n}=\frac{0+0}{3+0}=0\)
\(\lim\limits\frac{\sqrt{5}^n}{3^n+1}=\lim\limits\frac{\left(\frac{\sqrt{5}}{3}\right)^n}{1+\left(\frac{1}{3}\right)^n}=\frac{0}{1+0}=0\)
\(\lim\limits\frac{5.5^n-3.7^n}{3.10^n+36.6^n}=\lim\limits\frac{5.\left(\frac{5}{10}\right)^n-3\left(\frac{7}{10}\right)^n}{3+36\left(\frac{6}{10}\right)^n}=\frac{0-0}{3+0}=0\)