chứng minh:\(\sqrt[3]{3+\sqrt{3}}+\sqrt[3]{3-\sqrt{3}}\le2\sqrt[3]{3}\)
Chứng minh rằng biểu thức \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}\le2\) với mọi số thực \(x\) (\(x\ge0\))
Chứng minh với mọi x,y,z dương :
\(\frac{y+z}{x+\sqrt[3]{4\left(y^3+z^3\right)}}+\frac{z+x}{y+\sqrt[3]{4\left(z^3+x^3\right)}}+\frac{x+y}{z+\sqrt[3]{4\left(x^3+y^3\right)}}\le2\)
Xét \(4\left(x^3+y^3\right)-\left(x+y\right)^3=3\left(x+y\right)\left(x-y\right)^2\ge0\) (Vì x,y > 0)
Suy ra \(z+\sqrt[3]{4\left(x^3+y^3\right)}\ge x+y+z\)
Hay \(\frac{x+y}{z+\sqrt[3]{4\left(x^3+y^3\right)}}\le\frac{x+y}{x+y+z}\)
Tương tự : \(\frac{y+z}{x+\sqrt[3]{4\left(y^3+z^3\right)}}\le\frac{y+z}{x+y+z}\)
\(\frac{z+x}{y+\sqrt[3]{4\left(z^3+x^3\right)}}\le\frac{z+x}{x+y+z}\)
Cộng theo vế được đpcm.
Cho a + b = 2. Chứng minh rằng:
\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Giúp mình với!!!
Có \(a+1+1\ge3\sqrt[3]{a}\)
\(b+1+1\ge3\sqrt[3]{b}\)
\(\Rightarrow a+b+1+1+1+1\ge3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Rightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\le6\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}\le2\)
"=" tại a=b=1
1) Chứng minh đẳng thức \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
2) Chứng minh \(\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}=1\)
chứng minh
\(\dfrac{3}{2}\)\(\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{6}\)
rút gọn
D=\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}\)\(-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
a)=\(\dfrac{3\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}-\dfrac{4\sqrt{6}}{2}\)
\(=\dfrac{2\sqrt{6}}{3}-\dfrac{\sqrt{6}}{2} \)
=\(\dfrac{4\sqrt{6}}{6}-\dfrac{3\sqrt{6}}{6}=\dfrac{\sqrt[]{6}}{6}\)
b)\(\dfrac{D}{\sqrt{3}}=\dfrac{\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1}{\sqrt{3}+1-1}\)
\(\dfrac{D}{\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)
D=2
Cho x,y,z,a,b,c là các số dương. Cmr:
\(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
Từ đó suy ra:\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\le2\sqrt[3]{3}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\geq 3\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\)
\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\geq 3\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\)
Cộng theo vế:
\(\Rightarrow \frac{x+a}{x+a}+\frac{y+b}{y+b}+\frac{c+z}{c+z}\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)
\(\Rightarrow 3\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)
\(\Rightarrow \sqrt[3]{(a+x)(b+y)(c+z)}\geq \sqrt[3]{abc}+\sqrt[3]{xyz}\)
Ta có đpcm
b) Áp dụng công thức trên, với \(a=\sqrt[3]{3}; b=\sqrt[3]{3^2}+1; c=1; x=\sqrt[3]{3}; y=\sqrt[3]{3^2}-1; z=1\) suy ra:
\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\leq \sqrt[3]{(\sqrt[3]{3}+\sqrt[3]{3})(\sqrt[3]{3^2}+1+\sqrt[3]{3^2}-1)(1+1)}=2\sqrt[3]{3}\)
Ta có đpcm.
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)
Chứng minh đẳng thức:\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4
Chứng minh \(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
\(\hept{\begin{cases}\left(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}\right)^2=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\\\left(3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\right)^2=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\end{cases}}\)