Những câu hỏi liên quan
PQ
Xem chi tiết
AH
11 tháng 3 2021 lúc 3:14

** Bài này chỉ đúng khi $a,b,c$ không âm thôi bạn nhé.

Lời giải:
Theo BĐT Schur:

$a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)$

$\Rightarrow a^3+b^3+c^3+6abc\geq (a+b+c)(ab+bc+ac)$

$\Leftrightarrow a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3[(a+b)(b+c)(c+a)+abc]+6abc\geq 4(a+b+c)(ab+bc+ac)$

$\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)+9abc\geq 4(a+b+c)(ab+bc+ac)$

$\Leftrightarrow (a+b+c)^3+9abc\geq 4(a+b+c)(ab+bc+ac)$

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
FT
Xem chi tiết
NT
15 tháng 4 2018 lúc 16:57

schur

Bình luận (0)
H24
8 tháng 2 2020 lúc 9:56

Cách 1:

BĐT \(\Leftrightarrow7\left(a+b+c\right)\left(ab+bc+ca\right)\le2\left(a+b+c\right)^3+9abc\)

\(VP-VT=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Ta có đpcm. Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Cách 2:

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\) thì 3u = 1. Chú ý \(\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\Rightarrow3u^2\ge3v^2\Rightarrow u^2\ge v^2\)

Cần chứng minh: \(21v^2\le2+9w^3\Leftrightarrow63uv^2\le54u^3+9w^3\)

\(RHS-LHS=9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3.

P/s: Em không chắc ở cách 2.

Bình luận (0)
 Khách vãng lai đã xóa
NL
26 tháng 5 2020 lúc 13:42

tên fairy tail nghe nó sến súa  !

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
BV
Xem chi tiết
DQ
26 tháng 2 2021 lúc 6:00

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
BV
26 tháng 2 2021 lúc 22:54

sai rồi nhé bạn 

Bình luận (0)
 Khách vãng lai đã xóa
BV
26 tháng 2 2021 lúc 23:05

làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
AH
26 tháng 12 2018 lúc 11:37

Lời giải:
\(a+b+c+\frac{9abc}{ab+bc+ac}\geq 4\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)

\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq 4(ab+bc+ac)\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)

\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq \frac{4a^2b^2}{a+b}+4abc+\frac{4b^2c^2}{b+c}+4abc+\frac{4a^2c^2}{a+c}+4abc\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq \frac{4a^2b^2}{a+b}+\frac{4b^2c^2}{b+c}+\frac{4a^2c^2}{a+c}(*)\)

Áp dụng BĐT AM-GM:

\(4ab\leq (a+b)^2\Rightarrow \frac{4a^2b^2}{a+b}\leq \frac{ab(a+b)^2}{a+b}=ab(a+b)\)

TT: \(\frac{4b^2c^2}{b+c}\leq bc(b+c); \frac{4c^2a^2}{c+a}\leq ac(a+c)\)

Cộng các BĐT trên ta thu được BĐT $(*)$. Tức là $(*)$ luôn đúng, kéo theo BĐT ban đầu luôn đúng

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
KA
Xem chi tiết
TN
25 tháng 6 2017 lúc 21:20

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

Bình luận (0)
AN
26 tháng 6 2017 lúc 9:25

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

Bình luận (0)
TH
Xem chi tiết
NN
19 tháng 2 2022 lúc 17:24

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

Bình luận (0)
 Khách vãng lai đã xóa
NT
21 tháng 2 2022 lúc 14:38

sai r bạn ơi ko biết còn đòi

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
NV
Xem chi tiết
NL
30 tháng 8 2021 lúc 20:46

Ta chứng minh BĐT sau cho các số dương:

\(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)

Áp dụng:

\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)

Tương tự và cộng lại:

\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)

\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)

\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)

Bình luận (0)