Những câu hỏi liên quan
TN
Xem chi tiết
DT
28 tháng 12 2018 lúc 15:43

x, y, z > 0 chứ bn ? Nếu đúng z thì inbox với mik, mik sẽ chỉ cho....

Bình luận (0)
TN
28 tháng 12 2018 lúc 15:44

mình đánh nhầm bạn ạ. x y z >0 đấy

Bình luận (0)
TN
Xem chi tiết
NT
Xem chi tiết
NT
28 tháng 12 2018 lúc 15:25

x,y,z>0 nha

Bình luận (0)
NL
28 tháng 12 2018 lúc 17:25

\(M=\dfrac{1}{16x^2}+\dfrac{1}{4y^2}+\dfrac{1}{16z^2}=\dfrac{1}{16}\left(\dfrac{1}{x^2}+\dfrac{2^2}{y^2}+\dfrac{4^2}{z^2}\right)\)

\(\Rightarrow M\ge\dfrac{1}{16}.\dfrac{\left(1+2+4\right)^2}{\left(x^2+y^2+z^2\right)}=\dfrac{49}{16}\)

\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\dfrac{1}{x^2}=\dfrac{2}{y^2}=\dfrac{4}{z^2}\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{7}\\y^2=\dfrac{2}{7}\\z^2=\dfrac{4}{7}\end{matrix}\right.\)

Bình luận (0)
NY
Xem chi tiết
VL
Xem chi tiết
AH
23 tháng 9 2021 lúc 18:07

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$

Tương tự:

$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$

$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$

Cộng theo vế:

$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)

Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$

Bình luận (1)
VH
Xem chi tiết
PD
Xem chi tiết
ZZ
29 tháng 11 2019 lúc 18:16

Bạn tham khảo tại đây:

Câu hỏi của hoangchau - Toán lớp 9 - Học toán với OnlineMath

Hoặc

Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NM
29 tháng 11 2019 lúc 18:18

Áp dụng BĐT Cauchy - Schwarz ta có ;

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}=\frac{\left(\frac{1}{4}\right)^2}{y^2}+\frac{\left(\frac{1}{2}\right)^2}{y^2}+\frac{1}{z^2}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x^2+y^2+z^2}\)

hay \(M\ge\frac{49}{16}\)

Vậy \(M_{min}=\frac{49}{16}\)

Dấu " = " xảy ra khi \(\frac{1}{4x^2}=\frac{1}{2y^2}=\frac{1}{z^2}\)

hay 

\(x=\sqrt{\frac{1}{7}};y=\sqrt{\frac{2}{7}};z=\sqrt{\frac{4}{7}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
KN
27 tháng 11 2019 lúc 19:56

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)

\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)

\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)

\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)(Svac - xơ)

Vậy \(M_{min}=\frac{49}{16}\Leftrightarrow\frac{1}{x^2}=\frac{4}{y^2}=\frac{16}{z^2}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{21}}\\y=\frac{2}{\sqrt{21}}\\z=\frac{4}{\sqrt{21}}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
27 tháng 11 2019 lúc 20:07

Cho sửa chỗ dấu "="

\("="\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)

\(\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1}{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\sqrt{\frac{1}{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
9 tháng 12 2019 lúc 22:15

๖²⁴ʱČøøℓ ɮøү ²к⁷༉ Sửa dấu "=" sai r kìa man.x,y dương nên đâu cần đến âm đâu ???

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
H24
13 tháng 2 2018 lúc 12:09

\(x^3+2x^2+3x+2=y^3\)

\(x^3+2x^2+3x=y^3-2\)

\(x\left(x^2+2x+3\right)=y^3-2\)

\(x=\frac{y^3-2}{x^2+2x+3}\)

đến đây tìm để \(x,y\in Z\) là xong

Bình luận (0)
PD
13 tháng 2 2018 lúc 12:21

đép ba si tồ ơi anh làm kiểu j vậy e chẳng hiểu c éo j cả :)

Bình luận (0)
PQ
13 tháng 2 2018 lúc 12:22

Despacito là con gái chứ anh gì :')

Bình luận (0)