Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau
f(0) # 0;
f(1)=3;
f(x)f(y)=f(x+y)+f(x-y)
Tính giá trị của f(7)
Ai nhanh đầy đủ mik ti ck nhé
Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau
f(0) # 0;
f(1)=3;
f(x)f(y)=f(x+y)+f(x-y)
Tính giá trị của f(7).
theo đề ra ta có f(1)f(0)=f(1+0)+f(1-0) \(\Rightarrow\)3f(0)=3+3\(\Rightarrow\)f(0)=2
f(2)f(0)=f(2+0)+f(2-0) \(\Rightarrow\)2f(2)=2+2\(\Rightarrow\)f(2)=2
f(2)f(1)=f(2+1)+f(2-1) \(\Rightarrow\)2.3=f(3)+3\(\Rightarrow\)f(3)=3
f(3)f(2)=f(3+2)+f(3-2) \(\Rightarrow\)2.3=f(5)+3\(\Rightarrow\)f(5)=3
f(5)f(2)=f(5+2)+f(5-2) \(\Rightarrow\)2.3=f(7)+3\(\Rightarrow\)f(7)=3
Xác định một hàm số f(x) thỏa mãn các điều kiện sau
(i). f(x) có tập xác định là D = R ∖ 4
(ii). lim x → 4 f x = + ∞ lim x → + ∞ f x = 3 và lim x → + ∞ f x = 3
A. f x = 3 x 2 x - 4 2
B. f x = 3 x 2 + 1 x - 4
C. f x = 3 - x 2 x - 4 2
D. f x = x - 3 x 2 x - 4 2
Lần lượt kiểm tra từng hàm số ta thấy chỉ có hàm số f x = 3 x 2 x - 4 2 thỏa mãn cả hai điều kiện
Đáp án A
Gọi f là hàm số xác định trên tập các số nguyên và thoả mãn các điều kiện:
1)f(x)=0
2)f(1)=3
3)f(x).f(y)=f(x+y)+f(x-y) \(\forall\)\(x,y\in Z\)
Cho hàm số \(y=f\left(x\right)\) liên tục trên tập xác định R, và thỏa mãn điều kiện phương trình \(f'\left(x\right)=0\) có 3 nghiệm \(x=-3\) ; \(x=0\) ; \(x=2\). Xét hàm số \(y=g\left(x\right)=f\left(x^2+4x-m\right)\), tính tổng các giá trị nguyên của tham số \(m\in[-10;10]\) để phương trình \(g'\left(x\right)=0\) có đúng 5 nghiệm phân biệt .
A. -6 B. 42 C. 50 D. 6
P/s: Kì thi cuối học kỳ 2 lớp 11 trường THPT Phan Huy Chú , thành phố Hà Nội
Em xin nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, em cám ơn nhiều ạ!
Xác định một hàm số y = f(x) thoả mãn đồng thời các điều kiện sau
f(x) xác định trên R
y = f(x) liên tục trên (−∞;0) và trên [0;+∞) nhưng gián đoạn tại x = 0
Cho hàm số y = f(x) xác định và liên tục trên ℝ thỏa mãn đồng thời các điều kiện sau: f ( x ) > 0 , ∀ ∈ ℝ f ' x = - e x . f 2 x , ∀ ∈ ℝ f 0 = 1 2
Tính giá trị của f(ln2)
A. ln 2 + 1 2
B. 1 4
C. 1 3
D. ln 2 2 + 1 2
Đáp án C
Ta có f ' x = - e x . f 2 x ⇔ f ' x f 2 x = - e x ⇔ ∫ f ' x f 2 x d x = ∫ - e x d x = ∫ d f x f 2 x d x = - e x + C
⇔ - 1 f x = - e x + C ⇔ f x = 1 e x - C mà f 0 = 1 2 ⇒ 1 1 - C = 1 2 ⇒ C = - 1
Vậy f x = 1 e x + 1 ⇒ f ln 2 = 1 e ln 2 + 1 = 1 2 + 1 = 1 3 .
Cho hàm số f(x) xác định và có đạo hàm trên khoảng 0 ; + ∞ , đồng thời thỏa mãn điều kiện f 1 = 1 + e , f x = e 1 x + x . f ' x , ∀ x ∈ 0 ; + ∞ . Giá trị của f(2) bằng
A. 1 + 2 e
B. 1 + e
C. 2 + 2 e
D. 2 + e
Cho hàm số y=f(x)>0 xác định và có đạo hàm trên đoạn [0;1] và thỏa mãn các điều kiện sau: g(x)=1+2018 ∫ 0 x f ( t ) dt ; g ( x ) = f 2 ( x ) . Tính ∫ 0 1 ( g ( x ) dx ?
A. 1011/2.
B. 1009/2.
C. 2019/2.
D. 505
Cho biết y=f(x) là hàm số liên tục và xác định trên R|{1;3} và thỏa mãn đồng thời các điều kiện: f ' ( x ) = 1 ( x - 1 ) ( x - 3 ) ; f ( 0 ) = 2 f ( 2 ) = 4 f ( 4 ) = 4 Khi đó giá trị của biểu thức: f ( - 1 ) + f 3 2 + f 9 2 nằm trong khoảng?
A . 5 - 1 2 ln 7 18
B . 7 - 1 2 ln 7 18
C . 2 + 1 2 ln 7 18
D . 3 + 1 2 ln 7 18