Những câu hỏi liên quan
NN
Xem chi tiết
NT
19 tháng 12 2021 lúc 13:51

a: p=3

b: p=3

Bình luận (1)
DN
19 tháng 12 2021 lúc 13:54

a.\(p\in\left\{3\right\}\)
b.\(q\in\left\{3\right\}\)

Bình luận (1)
NT
19 tháng 12 2021 lúc 14:03

\(a,\) p có dạng 3k+1;3k+2 hoặc 3k

\(TH1:p=3k+1\\ \Rightarrow p+14=3k+1+14=3k+15⋮3\left(loại\right)\\ TH2:p=3k+2\\ \Rightarrow p+10=3k+12⋮3\left(loại\right)\\ TH3:p=3k\Rightarrow p+10=3k+10\left(chọn\right)\\ \Rightarrow p+14=3k+14\left(chọn\right)\)

Vậy p có dạng 3k thỏa mãn
\(\Rightarrow p=3\)

Bạn làm tương tự với câu b nha

Bình luận (4)
NN
Xem chi tiết
NT
20 tháng 12 2021 lúc 15:57

a: p=3

b: q=3

Bình luận (0)
Xem chi tiết
H24
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Bình luận (0)
PC
Xem chi tiết
H24
25 tháng 1 2016 lúc 12:53

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.
Suy ra p chia 3 dư 1 hoặc 2.
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố

Vậy chỉ có p=3 thỏa thôi

Bình luận (0)
H24
Xem chi tiết
H24
28 tháng 12 2020 lúc 20:14

Các bạn giải chi tiết ra hộ mình nhaaaa

 

Bình luận (0)
HC
Xem chi tiết
MH
15 tháng 11 2021 lúc 20:48

a) Với p=2

⇒ 5p+3=13 (TM)

Với p>2 

⇒ p=2k+1

⇒ 5p+3=5(2k+1)+3

             =10k+8 ⋮2

⇒ là hợp số (L)

Vậy p=2

Bình luận (0)
HK
Xem chi tiết
LP
23 tháng 6 2023 lúc 8:06

 Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).

 Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\) 

Bình luận (0)
MT
Xem chi tiết
TL
5 tháng 7 2023 lúc 13:58

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

Bình luận (0)
NT
5 tháng 7 2023 lúc 15:14

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

Bình luận (0)
VN
Xem chi tiết
LT
Xem chi tiết