Phân tích thành nhân tử : (x – 1)(x + 1)(x + 3)(x + 5) + 7
Phân tích đa thức thức thành nhân tử : (x – 5)(x – 1)(x + 3)(x + 7) + 60
\(\left(x-5\right)\left(x-1\right)\left(x+3\right)\left(x+7\right)+60\)
\(=\left(x^2+2x-35\right)\left(x^2+2x-3\right)+60\)
\(=\left(x^2+2x\right)^2-38\left(x^2+2x\right)+105+60\)
\(=\left(x^2+2x\right)^2-3\left(x^2+2x\right)-35\left(x^2+2x\right)+165\)
\(=\left(x^2+2x-3\right)\left(x^2+2x-35\right)\)
\(=\left(x+3\right)\left(x-1\right)\left(x+7\right)\left(x-5\right)\)
Phân tích đa thức thành nhân tử : x^4 – x^3 – x + 1
\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=x^3\left(x-1\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2.\left(x^2+x+1\right)\)
x4 - x3 - x + 1
= (x4 - x3) - (x - 1)
= x3(x - 1) - (x - 1)
= (x3 - 1)(x - 1)
phân tích đa thức thành nhân tử x^5+x^4+1
x^5+x^4+1
=x5+x4+x3+x2+x+1-x3-x2-x
=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)
tự xử tiếp
Phân tích đa thức thành nhân tử:
x^4-7*x^2+1
Phân Tích Thành Nhân Tử:
a, x^11+x^4+1
b, x^7+x^4+1
a) = x * x * x * x * x * x *x *x * x * x * x
x^11+x^4+1
=x^11-x^2+x^4-x+x^2+x+1
=x^2(x^9-1)+x(x^3-1)+(x^2+x+1)
=x^2[(x^3-1)(x^6+x^3+1)]+x(x-1)(x^2+x+1)+(x^2+x+1)
=x^2(x-1)(x^2+x+1)(x^6+x^3+1)+x(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)[x^2(x-1)(x^6+x^3+1)+x(x-1)+1]
=(x^2+x+1)(x^9-x^8+x^6-x^5+x^3-x+1)
Phân tích đa thức thành nhân tử : x^4 + 2x^3 + x^2 + x + 1
\(=x^2\left(x^2+2x+1\right)+x+1\)
\(=x^2\left(x+1\right)^2+x+1\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4+2x^3+x^2+x+1\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử (6.x+3) - (2.x-5) . (2.x+1)
Đề bài : phân tích đa thức thành nhân tử
1, x3-5x2+3x+9
2,x7+x5+1
3,x11+x+1
2 \(x^7+x^5+1=x^7+x^6+x^5-x^6+1=x^5\left(x^2+x+1\right)-\left(x^6-1\right)=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)=\left(x^2+x+1\right)\left(x^5-\left(x-1\right)\left(x^3+1\right)\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
1 \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
\(=\left(x^2-6x+9\right)\left(x+1\right)=\left(x-3\right)^2\left(x+1\right)\)
Phân tích đa thức thành nhân tử : (x – 2)(x – 1)x(x + 1) – 24
\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)-24\)
\(=\left(x^2-x-2\right)\left(x^2-x\right)-24\)
\(=\left(x^2-x\right)-2\left(x^2-x\right)-24\)
\(=\left(x^2-x-6\right)\left(x^2-x+4\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x^2-x+4\right)\)
đây là cách mình chế ra bạn ko hiểu chỗ nào hỏi mk nhé