\(|5\cdot a-6\cdot b+300|^{2017}+\left(20-3\cdot b\right)^{2018}=C\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)
=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018
=1/2018
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
p/s: chúc bạn hok tốt
tính nhanh
a) A=\(2018^2-2017\cdot2019\)
b) B=\(9^8\cdot2^8-\left(18^4-1\right)\cdot\left(18^4+1\right)\)
c) C=\(163^2+74\cdot163+37^2\)
d) D=\(\dfrac{2018^3-1}{2018^2+2019}\)
e) E=\(\left(2+1\right)\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)-2^{32}\)
Lời giải:
\(A=2018^2-2017.2019=2018^2-(2018-1)(2018+1)\)
\(=2018^2-(2018^2-1^2)=1\)
\(B=9^8.2^8-(18^4-1)(18^4+1)\)
\(=(9.2)^8-[(18^4)^2-1^2]\)
\(=18^8-(18^8-1)=1\)
\(C=163^2+74.163+37^2=163^2+2.37.163+37^2\)
\(=(163+37)^2=200^2=40000\)
\(D=\frac{2018^3-1}{2018^2+2019}=\frac{(2018-1)(2018^2+2018+1)}{2018^2+2019}\)
\(=\frac{2017(2018^2+2019)}{2018^2+2019}=2017\)
Sử dụng công thức \((a-b)(a+b)=a^2-b^2\)
\(E=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^8-1)(2^8+1)(2^{16}+1)-2^{32}\)
\(=(2^{16}-1)(2^{16}+1)-2^{32}\)
\(=(2^{32}-1)-2^{32}=-1\)
cho a, b, c là 3 số thực khác 0, thỏa mãn
\(\frac{a+b-2017\cdot c}{c}=\frac{b+c-2017\cdot a}{a}=\frac{c+a-2017\cdot b}{b}\)
tính giá trị của biểu thức
B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
help me!!!
a) tính giá trị nhỏ nhất: H=5.\(\left|3\cdot x-6\right|\)+100
b)cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) c/m \(\dfrac{a\cdot c}{b\cdot d}\)=\(\dfrac{\left(a+2018\cdot c\right)^2}{\left(b+2018\cdot d\right)^2}\)(các tỉ lệ thức đều có nghĩa)
giúp mk nhé mai mk kiểm tra học kì rồi
a: H=5|3x-6|+100>=100
Dấu = xảy ra khi x=2
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\left(\dfrac{a+2018c}{b+2018d}\right)^2=\left(\dfrac{bk+2018dk}{b+2018d}\right)^2=k^2\)
=>ĐPCM
Tìm x:
a) \(\frac{3}{\left(x+2\right)\cdot\left(x+5\right)}\)+\(\frac{5}{\left(x+5\right)\cdot\left(x+10\right)}\)+\(\frac{7}{\left(x+10\right)\cdot\left(x+17\right)}\)= \(\frac{x}{\left(x+2\right)\cdot\left(x+17\right)}\)
Với x không thuộc (-2;-5;-10;-17)
b) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}\)+\(\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}\)+\(\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}\)-\(\frac{1}{20}\)= \(\frac{-3}{4}\)
Với x không thuộc (1;3;8;20)
c)\(\frac{x+1}{2019}\)+\(\frac{x+2}{2018}\)= \(\frac{x-3}{2017}\)\(\frac{x-4}{2016}\)
1: \(\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{2017}\cdot\left(1+2+3+...+2017\right)\)
2: tính hợp li
a, \(44\cdot82-20^2+18\cdot44\)
b, \(\left(6^{10}:6^8\right):\left\{780:\left[78\cdot5-\left(125\cdot7^2\right)+13\cdot5\right]\right\}\)
Bài 2:
a: \(=44\cdot82-400+18\cdot44\)
\(=44\cdot100-400=4400-400=4000\)
b: \(=6^2:\left\{780:\left[390-125\cdot49+65\right]\right\}\)
\(=36:\left\{780:\left[-5670\right]\right\}\)
\(=36:\dfrac{-26}{189}=\dfrac{-3402}{13}\)
Cho \(\hept{\begin{cases}a\cdot\left(b^2+c^2\right)+b\cdot\left(c^2+a^2\right)+c\cdot\left(a^2+b^2\right)+2abc=0\\a^3+b^3+c^3=1\end{cases}}\)Tính A = \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc=0\)
\(\Rightarrow ab^2+ac^2+bc^2+ba^2+c\left(a+b\right)^2=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Rightarrow\left(a+b\right)\left(ab+c^2+ca+cb\right)=0\)
\(\Rightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Từ đó a = -b hoặc b = -c hoặc c = -a
Nếu a = -b mà \(a^3+b^3+c^3=1\Rightarrow\left(-b\right)^3+b^3+c^3=1\Rightarrow c^3=1\Rightarrow c=1\)
Khi đó: \(A=\frac{1}{\left(-b\right)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{1^{2017}}=0+1=1\)
Tương tự với các trường hợp b = -c và a = -c, ta tính được A = 1
TÍNH
\(C=\left(1+\frac{2}{3}\right)\cdot\left(1+\frac{2}{5}\right)\cdot\left(1+\frac{2}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1+\frac{2}{2015}\right)\cdot\left(1+\frac{2}{2017}\right)\)
\(D=\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{6}\right)\cdot\left(1-\frac{1}{10}\right)\cdot\left(1-\frac{1}{15}\right)\cdot\cdot\cdot\cdot\left(1-\frac{1}{780}\right)\)
\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)
\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)
Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:
\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)
\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)
1.Tính A= \(\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\cdot\cdot\left(\dfrac{1}{2018}-1\right)\)
2. Tìm GTLN của B = \(-\left|2018\cdot x+1\right|+\dfrac{3}{13}\)
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)