Những câu hỏi liên quan
PC
Xem chi tiết
LV
23 tháng 1 2017 lúc 20:24

Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016

=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y

nên A min=2016 khi y=4;x=-5

Bình luận (0)
PC
2 tháng 2 2017 lúc 11:49

hay thanks

Bình luận (0)
PC
10 tháng 2 2017 lúc 12:29

Cho hình bình hành ABCD . Có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,AD,AC,BD. Chứng minh MP,NQ,EF đồng quy

Bình luận (0)
NA
Xem chi tiết
HA
31 tháng 12 2016 lúc 17:15

A = x2 -2xy + 2y2+ 2x - 10y + 2033

= x2 - 2xy + y2 + y2 + 2x - 2y - 8y + 2033

= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) + 2016

= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2 + 2016

= (x - y + 1)2 + ( y - 4)2 + 2016 \(\ge\) 2016

=> Min của A = 2016 khi \(\left\{\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x-3=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy Min của A = 2016 khi x = 3 và y = 4.

Bình luận (0)
LD
Xem chi tiết
PH
28 tháng 12 2016 lúc 10:09

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

Bình luận (0)
H24
27 tháng 12 2016 lúc 18:34

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

Bình luận (0)
MT
Xem chi tiết
TL
28 tháng 11 2017 lúc 16:28

\(A=x^2-2xy+2y^2+2x-10y+2033\\ =x^2-2xy+y^2+y^2+2x-8y-2y+1+16+2016\\ =\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+1+\left(y^2-8y+16\right)+2016\\ =\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\\ =\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-4\right)^2+2016\\ =\left(x-y+1\right)^2+\left(y-4\right)^2+2016\\ Do\text{ }\left(y-4\right)^2\ge0\forall y\\ \left(x-y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\\ \Rightarrow A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\forall x;y\\ Dấu\text{ }''=''\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(y-4\right)^2=0\\\left(x-y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x-4+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\\ Vậy\text{ }A_{\left(Min\right)}=2016\text{ }khi\text{ }\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Bình luận (1)
HH
28 tháng 11 2017 lúc 20:55

xem lại đề

Bình luận (4)
HC
Xem chi tiết
TL
20 tháng 5 2018 lúc 18:19

Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này 

A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]

(X-Y+1)\(^2\)+(Y-4)\(^2\)

\(\Rightarrow=0\)

=>Amin=0 khi y=4;x=3

Bình luận (0)
H24
20 tháng 5 2018 lúc 18:34

Đặt  \(KK=x^2-2xy+2y^2+2x-10y+17\)

\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)

\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà  \(\left(x-y+1\right)^2\ge0\)

       \(\left(y-4\right)^2\ge0\)

\(\Rightarrow KK\ge0\)

Dấu " = " xảy ra khi : 

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy  \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)

Bình luận (0)
LD
20 tháng 9 2020 lúc 10:49

x2 - 2xy + 2y2 + 2x - 10y + 17

= ( x2 - 2xy + y2 + 2x - 2y + 1 ) + ( y2 - 8y + 16 )

= [ ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 1 ] + ( y - 4 )2

= [ ( x - y )2 + 2( x - y ) + 12 ] + ( y - 4 )2

= ( x - y + 1 )2 + ( y - 4 )2 ≥ 0 ∀ x, y

Đẳng thức xảy ra <=> x = 3 ; y = 4

Vậy GTNN của biểu thức = 0 <=> x = 3 ; y = 4

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
VT
Xem chi tiết
MT
9 tháng 7 2016 lúc 8:21

E=x^2+2y^2-2xy+2x-10y

=x2+y2-2xy+y2-8y+16+2x-2y-16

=(x-y)2+(y-4)2+2.(x-y)-16

=(x-y)2+2(x-y)+1+(y-4)2-17

=(x-y+1)2+(y-4)2-17 \(\ge\)-17

Dấu "=" xảy ra khi: y=4; x=3

Vậy GTNN của E là -17 tại x=3;y=4

Bình luận (0)
HP
9 tháng 7 2016 lúc 9:23

\(E=x^2+2y^2-2xy+2x-10y\)

\(=\left(x^2-2xy+2x\right)+2y^2-10y\)

\(=x^2-2x\left(y+1\right)+2y^2-10y\)

\(=x^2-2x\left(y+1\right)+\left(y-1\right)^2+2y^2-10y-\left(y-1\right)^2\)

\(=\left[x-\left(y-1\right)\right]^2+2y^2-10y-y^2+2y-1\)

\(=\left(x-y+1\right)^2+y^2-8y-1=\left(x-y+1\right)^2+\left(y^2-2.y.4+16\right)-17\)

\(=\left(x-y+1\right)^2+\left(y-4\right)^2-17\)

\(\left(x-y+1\right)^2\ge0;\left(y-4\right)^2\ge0=>E=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\) (với mọi x;y)

Dấu "=" xảy ra \(< =>\hept{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{cases}< =>\hept{\begin{cases}x-y=-1\\y=4\end{cases}}< =>x=3;y=4}\)

Vậy minE=-17 khi x=3;y=4

Bình luận (0)
TL
Xem chi tiết
TL
25 tháng 12 2017 lúc 20:34

Mk chỉ giúp phần tách thôi nha

3. A=x2-2xy+2y2+2x-10y+2033

=(x2-2xy+y2)+(y2-10y+25)+2x+2008

=(x2-2xy+y2)+(y2-10y+25)+(x2+2x+1)-x2+2007

=(x-y)2+(y-25)2+(x+1)2-x2+2007

Vì....

không bt là có đúng k đâuleuleu

Bình luận (2)
TL
25 tháng 12 2017 lúc 20:37

câu 2 cũng tương tự như vây nha

Bình luận (0)
TK
Xem chi tiết
H24
28 tháng 6 2021 lúc 16:50

`x^2-2xy+2y^2+2x-10+2038`

`=x^2-2xy+y^2+2(x-y)+y^2-8y+2038`

`=(x-y)^2+2(x-y)+1+y^2-8y+16+2021`

`=(x-y+1)^2+(y-4)^2+2021>=2021`

Dấu "=" `<=>` \(\begin{cases}y=4\\x=y-1=3\\\end{cases}\)

Bình luận (0)
TG
28 tháng 6 2021 lúc 16:52

\(x^2-2xy+2y^2+2x-10y+2038=\left(x-y+1\right)^2+\left(y-4\right)^2+2021\ge2021\)

Dấu = xảy ra khi:

\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)

=> x = 3 và y = 4

Bình luận (0)