Những câu hỏi liên quan
NM
Xem chi tiết
LL
Xem chi tiết
TH
3 tháng 2 2022 lúc 17:22

1. a) Gọi a là ƯCLN của 2n+5 và n+3.

- Ta có: (n+3)⋮a

=>(2n+6)⋮a

Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a

=>1⋮a

=>a=1 hay a=-1.

- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.

b) -Để phân số B có giá trị là số nguyên thì:

\(\left(2n+5\right)⋮\left(n+3\right)\)

=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)

=>\(-1⋮\left(n+3\right)\).

=>\(n+3\inƯ\left(-1\right)\).

=>\(n+3=1\) hay \(n+3=-1\).

=>\(n=-2\) (loại) hay \(n=-4\) (loại).

- Vậy n∈∅.

Bình luận (0)
MA
3 tháng 2 2022 lúc 17:35

1. a) Gọi `(2n +5 ; n + 3 ) = d`

`=> {(2n+5 vdots d),(n+3 vdots d):}`

`=> {(2n+5 vdots d),(2(n+3) vdots d):}`

`=> {(2n+5 vdots d),(2n+6 vdots d):}`

Do đó `(2n+6) - (2n+5) vdots d`

`=> 1 vdots d`

`=> d = +-1`

Vậy `(2n+5)/(n+3)` là phân số tối giản

b) `B = (2n+5)/(n+3)` ( `n ne -3`)

`B = [2(n+3) -1]/(n+3)`

`B= [2(n+3)]/(n+3) - 1/(n+3)`

`B= 2 - 1/(n+3)`

Để B nguyên thì `1/(n+3)` có giá trị nguyên

`=> 1 vdots n+3`

`=> n+3 in Ư(1) = { 1 ; -1}`

+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)

+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)

Vậy `n in { -2; -4}` thì `B` có giá trị nguyên

2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)

Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)

Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)

Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)`  (học sinh)

Vì số học sinh của lớp `6A` không đổi nên ta có :

`7/3x + x = 3/2 (x+4) + x+4`

`=> 10/3 x = 3/2 x + 6 + x + 4`

`=> 10/3 x  - 3/2 x -x = 10 `

`=> 5/6x = 10`

`=> x=12` (thỏa mãn điều kiện)

`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh

`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh

`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)

Vậy lớp `6A` có `40` học sinh

 

Bình luận (0)
NH
25 tháng 12 2024 lúc 20:22

 

 

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 7 2023 lúc 0:03

1:

2n^2+5n-1 chia hết cho 2n-1

=>2n^2-n+6n-3+2 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2}

mà n nguyên

nên n=1 hoặc n=0

2:

a: A=n(n+1)(n+2)

Vì n;n+1;n+2 là 3 số liên tiếp

nên A=n(n+1)(n+2) chia hết cho 3!=6

b: B=(2n-1)[(2n-1)^2-1]

=(2n-1)(2n-2)*2n

=4n(n-1)(2n-1)

Vì n;n-1 là hai số nguyên liên tiếp

nên n(n-1) chia hết cho 2

=>B chia hết cho 8

c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24

Bình luận (1)
DT
Xem chi tiết
NT
15 tháng 12 2016 lúc 12:58

làm câu

Bình luận (0)
NA
Xem chi tiết
NT
17 tháng 11 2023 lúc 13:44

ĐKXĐ: \(n\notin\left\{1;-1\right\}\)

Để \(\dfrac{2n-1}{n^2-1}\in Z\) thì \(2n-1⋮n^2-1\)

=>\(\left(2n-1\right)\left(2n+1\right)⋮n^2-1\)

=>\(4n^2-1⋮n^2-1\)

=>\(4n^2-4+3⋮n^2-1\)

=>\(n^2-1\inƯ\left(3\right)\)

=>\(n^2-1\in\left\{1;-1;3;-3\right\}\)

=>\(n^2\in\left\{2;0;4;-2\right\}\)

mà n là số nguyên

nên \(n^2\in\left\{0;4\right\}\)

=>\(n\in\left\{0;2;-2\right\}\)

Thử lại, ta thấy chỉ có \(n\in\left\{0;2\right\}\) thỏa mãn

Bình luận (0)
VU
Xem chi tiết
NT
7 tháng 4 2021 lúc 22:07

a)

ĐKXĐ: \(n\ne1\)

Để A là số nguyên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

Vậy: \(n\in\left\{2;0;8;-6\right\}\)

b) ĐKXĐ: \(n\ne-2\)

Để B là số nguyên thì \(n-3⋮n+2\)

\(\Leftrightarrow n+2-5⋮n+2\)

mà \(n+2⋮n+2\)

nên \(-5⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(-5\right)\)

\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{-1;-3;3;-7\right\}\)(thỏa ĐK)

Vậy: \(n\in\left\{-1;-3;3;-7\right\}\)

 

Bình luận (1)
NT
7 tháng 4 2021 lúc 22:09

c) ĐKXĐ: \(n\ne-1\)

Để C là số nguyên thì \(3n-1⋮2n+2\)

\(\Leftrightarrow6n-2⋮2n+2\)

\(\Leftrightarrow6n+6-8⋮2n+2\)

mà \(6n+6⋮2n+2\)

nên \(-8⋮2n+2\)

\(\Leftrightarrow2n+2\inƯ\left(-8\right)\)

\(\Leftrightarrow2n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow2n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)

\(\Leftrightarrow n\in\left\{\dfrac{-1}{2};\dfrac{-3}{2};0;-2;1;-3;3;-5\right\}\)

Kết hợp ĐKXĐ, ta được: \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

Bình luận (0)
L3
Xem chi tiết
OY
19 tháng 7 2021 lúc 8:21

(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì 2n⋮n-2

2n-4+4⋮n-2

2n-4⋮n-2⇒4⋮n-2

n-2∈Ư(4)⇒Ư(4)={1;-1;2;-2;4;-4}

n∈{3;1;4;0;6;-2}

(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+...+\dfrac{3}{48.50}\)

=\(\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+...+\dfrac{2}{48.50}\right)\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\)

=\(\dfrac{3}{2}.\dfrac{2}{25}\)

=\(\dfrac{3}{25}\)

Bình luận (0)

Giải:

(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì \(2n⋮n-2\) 

\(2n⋮n-2\) 

\(\Rightarrow2n-4+4⋮n-2\) 

\(\Rightarrow4⋮n-2\) 

\(\Rightarrow n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

n-2-4-2-1124
n-201346
Kết luậnloạit/mt/mt/mt/mt/m

Vậy \(n\in\left\{0;1;3;4;6\right\}\)

(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+\dfrac{3}{14.16}+...+\dfrac{3}{48.50}\) 

\(=\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+\dfrac{2}{14.16}+...+\dfrac{2}{48.50}\right)\) 

\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\) 

\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\) 

\(=\dfrac{3}{2}.\dfrac{2}{25}\) 

\(=\dfrac{3}{25}\) 

Chúc bạn học tốt!

Bình luận (0)
NT
19 tháng 7 2021 lúc 14:07

(1) Để biểu thức \(\dfrac{2n}{n-2}\) nguyên thì \(2n⋮n-2\)

\(\Leftrightarrow4⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{3;1;4;0;6;-2\right\}\)

Bình luận (0)
NV
Xem chi tiết
NT
12 tháng 7 2023 lúc 9:41

b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)

=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)

=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101

=>1-1/(n+1)=100/101

=>1/(n+1)=1/101

=>n+1=101

=>n=100

Bình luận (1)
NH
Xem chi tiết
NM
Xem chi tiết